Dr. Ulrike Bücking
Freie Universität Berlin
Institut für Mathematik
Diskrete algebraische Geometrie & Mathematik für Lehramt
Since summer semester 2019, I am - in cooperation with Christine Scharlach - responsible for the courses (in particular the lectures).
- Mathematisches Professionswissen für das Grundschullehramt I.1,
- Mathematisches Professionswissen für das Grundschullehramt I.2 and
- Mathematisches Professionswissen für das Grundschullehramt II .
Former teaching (at TU Berlin)
During the summer semester 2018, I was responsible for the lecture Complex Analysis I .
During the winter semester 2013/14, I was responsible for the lecture Mathematik für Physikerinnen und Physiker I.
During the summer school "Abecedarian of SIDE (ASIDE)" (27.6.-1.7.16) I held the lectures "Introduction to linear and non-linear integrable theories in discrete complex analysis" in the field "Discrete differential geometry". This has been published in the lecture notes by Springer (see publications).
For the following courses I have been in charge of the exercise course, tutorials and homework sheets.
Research Interests
- Convergence of discrete conformal mappings and convergence of discrete surfaces
- rigidity of planar patterns
- integrability of discrete conformal maps
- discrete (minimal) surfaces
- Hochschuldidaktik Mathematik
Project membership: SFB/Transregio Discretization in Geometry and Dynamics in Project A01: Discrete Riemann Surfaces
Preprints
A.I. Bobenko, U. Bücking. Convergence of discrete period matrices and discrete holomorphic integrals for ramified coverings of the Riemann sphere. Preprint arXiv:1809.04847 [math.CV], submitted. |
Publications
U. Bücking. Conformally symmetric triangular lattices and discrete θ-conformal maps. IMRN, rnz308 (2019), arXiv:1808.08064 [math.CV]. |
U. Bücking. On rigidity and convergence of circle patterns. Discrete and Computational geometry, 61 (2019), 380-420. arXiv:1605.01176 [math.CV] |
U. Bücking. C∞-convergence of conformal mappings for conformally equivalent triangular lattices. Results in Mathematics, 73 (2018). arXiv:1706.09145[math.CV] |
A. Bobenko, U. Bücking, S. Sechelmann. Discrete minimal surfaces of Koebe type. In Modern Approaches to Discrete Curvature, L. Najman and P. Romon (eds.), Lect. Notes in Math. 2184, Springer, 2017, 259-291. |
U. Bücking. Introduction to discrete complex analysis. In Symmetries and Integrability of Difference Equations: Lecture Notes of the Abecederian of SIDE 12, Montréal 2016, D. Levi, R. Verge-Rebelo and P. Winternitz (eds.), Springer, 2017, 153-193. |
S. Born, U. Bücking, B. Springborn. Quasiconformal distortion of projective transformations and discrete conformal maps. Discrete and Computational geometry, 57 (2017), 305-317. arXiv:1505.01341[math.CV] |
U. Bücking. Approximation of conformal mappings using conformally equivalent triangular lattices. In "Advances in Discrete Differential Geometry", A.I. Bobenko (ed.), Springer, 2016, 133-149. arXiv:1507.06449 [math.CV] |
U. Bücking, D. Matthes. Constructing solutions to the Björling problem for isothermic surfaces by structure preserving discretization. In "Advances in Discrete Differential Geometry", A.I. Bobenko (ed.), Springer, 2016, 309-345. arXiv:1506.07337[math.DG] |
U. Bücking. Rigidity of quasicrystallic and Zγ-circle patterns. Discrete and Computational geometry, 46 (2011), 223-251, arXiv:1001.3528[math.MG]. |
U. Bücking. Approximation of conformal mappings by circle patterns. Oberwolfach Reports, 6 (2009), 119-121. |
U. Bücking. Approximation of conformal mappings by circle patterns. Geometriae Dedicata, 137 (2008), 163-197, arXiv:0806.3833[math.MG]. |
U. Bücking. Minimal surfaces from circle patterns: Boundary value problems, examples. In: Discrete Differential Geometry, A.I. Bobenko, P. Schröder, J.M. Sullivan, G.M. Ziegler, (eds.), Series: Oberwolfach Seminars, Vol. 38, 2008, 37--56. |
U. Bücking. Approximation of conformal mappings by circle patterns and discrete minimal surfaces. PhD thesis, December 2007, Technische Universität Berlin, Supervisor: Prof. A. Bobenko, published online. |
U. Scheerer and C. Wulff. Reduced Dynamics for Momentum Maps with Cocycles. C.R. Acad. Sci. Paris - Série I - Mathematics 333(11), 999-1004, 2001. |
U. Scheerer. Reduzierte Dynamik für Symmetrien mit Impulsabbildungen, die nichttriviale Kozykeln haben : Diploma thesis, March 2002, Technische Universität Berlin. |