
An Overview and Classification of Adaptive

Approaches to Information Extraction

Christian Siefkes1,2 and Peter Siniakov1

1 Database and Information Systems Group, Freie Universität Berlin
Takustr. 9, 14195 Berlin, Germany

siefkes@inf.fu-berlin.de, siniakov@inf.fu-berlin.de
2 Berlin-Brandenburg Graduate School in Distributed Information Systems�

Abstract. Most of the information stored in digital form is hidden in
natural language texts. Extracting and storing it in a formal representa-
tion (e.g. in form of relations in databases) allows efficient querying, easy
administration and further automatic processing of the extracted data.
The area of information extraction (IE) comprises techniques, algorithms
and methods performing two important tasks: finding (identifying) the
desired, relevant data and storing it in appropriate form for future use.

The rapidly increasing number and diversity of IE systems are the
evidence of continuous activity and growing attention to this field. At
the same time it is becoming more and more difficult to overview the
scope of IE, to see advantages of certain approaches and differences to
others. In this paper we identify and describe promising approaches to IE.
Our focus is adaptive systems that can be customized for new domains
through training or the use of external knowledge sources. Based on
the observed origins and requirements of the examined IE techniques a
classification of different types of adaptive IE systems is established.

1 Introduction

1.1 Information Extraction

There are things unique to humans that astonish and fascinate at the same time.
One of them is the human language, admirable for its richness, complexity and
ability to adapt to different cultural and social environments. But as valuable
from cultural and aesthetic point of view human language is as challenging it is to
grasp it scientifically, to formalize and make it manifest for computer processing.
Information extraction (IE) builds the bridge between the evolutionary aspects
of language development and the algorithmic approach to language. IE is one
of the most promising efforts to exploit computational capabilities, accurateness
and correctness of machines for accomplishing elaborate, often tedious task of
searching for, analyzing and identifying desired information.

� The work of this author is supported by the German Research Society (DFG grant
no. GRK 316).

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IV, LNCS 3730, pp. 172–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Overview and Classification of Adaptive Approaches to IE 173

Most of the information stored in digital form is hidden in natural language
texts. Extracting and storing it in a formal representation (e.g. in form of rela-
tions in databases) allows efficient querying and easy administration of the ex-
tracted data. Moreover, information stored and queried in a canonical way can be
processed and interpreted by computers without human interaction; it can serve
for establishing ontologies, creation of knowledge bases and data analysis.

The area of IE comprises techniques, algorithms and methods performing
two important tasks: finding (identifying) the desired, relevant data and storing
it in appropriate form for future use. The notion of fact extraction is often used
interchangeably with the notion of IE. The goals of fact extraction, however,
are typically more specific and according to them fact extraction can be defined
as the transformation of facts expressed in natural language to a given, formal,
properly defined target structure. Fact extraction can therefore be regarded as a
subset of IE extraction focusing on more rigidly structured representation forms.

1.2 Related Areas

A precursor of information extraction was the field of text understanding (or
message understanding) which had the more ambitious aim of completely repre-
senting the contents of texts. To stimulate research in this area was the original
goal of the Message Understanding Conferences (MUC) held from 1987 through
1998 under the auspices of the US government (ARPA/DARPA).

The term text mining (TM) is sometimes used almost synonymously to IE.
It also denotes the application of data mining techniques to text with the goal
of generating new knowledge by finding unknown patterns. TM in this second
meaning aims farther than IE, which does not try to generate new knowledge,
but only to represent facts explicitly expressed in a text in a more formal struc-
ture. But IE can be used as a first step in text mining, by extracting facts from
the unstructured text to a database or other structured representation. In a sec-
ond step, usual data mining techniques can be applied to the resulting database
structure to discover interesting relationships in the data. This approach is uti-
lized by [39].

IE and the better established field of information retrieval (IR) which locates
relevant texts can be combined in various ways. IR can be used to select relevant
documents for further analysis by IE. On the other hand, the structure filled by
IE can also be utilized for more flexible IR (using a structured query language
like SQL). Thus IE might be useful as a preparatory step for information retrieval
as well as for postprocessing.

1.3 Goals and Evaluation Criteria

The history of IE as an independent field of research began in the 1980s as a num-
ber of academic and industrial research institutions were working on extracting
information from naval messages in projects sponsored by the U.S. navy. After
establishing of the Message Understanding Conference for comparing the perfor-
mance of IE systems, information extraction experienced rapid growth extending

174 C. Siefkes and P. Siniakov

its applications to new domains and employing diverse new techniques. Origi-
nally consisting of handcrafted rule-based systems, the spectrum of IE meth-
ods has been continuously enriched by systems applying statistical and learning
methods. Now it ranges from classical pattern-oriented systems over numerous
combinations of different AI and statistical methods to rather new approaches
such as wrapper induction.

The rapidly increasing number and diversity of IE systems are the evidence
of continuous activity and growing attention to this field. At the same time it is
becoming more and more difficult to overview the scope of IE, to see advantages
of certain approaches and differences to others. Furthermore it is hard to estimate
what the development perspective of IE is, what ideas are promising and where
the focus of IE will be in the future.

In this paper we identify and describe promising approaches to IE. Our focus
is adaptive systems that can be customized for new domains by training or the
use of external knowledge sources. Handcrafted systems that can only be adapted
by elaborate rewriting are not considered. According to the observed origins and
requirements of the examined IE techniques, a classification of different types
of adaptive IE systems is established. The classification is significantly based on
the essential methods and resources used for extraction such as learning tech-
niques and models and central features. Therefore the approaches that belong
to different classes are not necessarily completely orthogonal to each other since
some techniques and features are not exclusive to an approach (e.g. rule-based
approaches may use some statistical techniques for solving some subtasks in the
extraction algorithm).

Since the number of existing systems is considerably large it will not be pos-
sible to provide a detailed description of each system. Instead we select systems
that distinctly represent directions of research without focusing on details of the
systems. However, features of systems are identified that are common for the
approach they pursue. Table 1 lists the regarded systems and the approaches
they represent.

We distinguish three main classes: rule learning, knowledge-based and sta-
tistical approaches. In Sec. 3–5 the approaches are presented according to the
classification so as related subclasses are discussed in the common context. To
make the analysis of different approaches more systematic and establish a com-
mon base for their comparison and correlation we consider several qualitative
criteria.

Used methods and algorithms: We focus on how relevant content is identi-
fied in texts and what techniques are used to match it to the target structure.
Learning capabilities, learning models, the amount and role of human inter-
action are analyzed to infer advantages and weaknesses of the approach.
These aspects form the basis of our classification and are mainly discussed
in Sec. 3–5 where the different types of approaches are presented.

Input and output features: Input characteristics involve the prerequisites
that the processed texts should fulfill and requirements on used resources.
These characteristics affect the domains where approaches can be employed

An Overview and Classification of Adaptive Approaches to IE 175

Table 1. Overview of the Selected Approaches and Systems

Approach System(s) Section

Rule Learners

Pattern & Template [40] 3.1
Creation [11]

[44]

Covering Algorithms Crystal [56, 52] 3.2
Whisk [54]
(LP)2 [9, 10]

Relational Rapier [4, 5] 3.3
SRV [21]

Case-based [6] 3.4

Wrapper Induction Stalker [37, 38] 3.5
BWI [22]

Hybrid (Decision Trees) IE2 [1] 3.6

Knowledge-based Approaches

Horn Clauses TANKA/MaLTe [13] 4.1

Ontology-based [15] 4.2

Thesaurus-based TIMES [2, 7] 4.3

Statistical Approaches

Probabilistic Parsing SIFT [35, 36] 5.1

Hidden Markov Models Active HMMs [48, 49] 5.2
Stoch. Optimization [23, 24]
(C)HHMMs [51]

Conditional Markov Models MEMMs [33] 5.3
& Random Fields CRF [28, 34]

Token Classification MaxEnt [8] 5.4
MBL [59]
TIE [50]
ELIE [18, 19]

Fragment Classification & SNoW-IE [46, 47] 5.5
Bayesian Networks BIEN [41]

(application range) and how easily they can be adapted to new domains and
resources (adaptability). It is examined how much preparatory work and
linguistic preprocessing is necessary, whether morphological and syntactic
analysis is presupposed etc. Another important factor is whether the ap-
proaches rely on external resources such as semantic resources (e.g. thesauri
or ontologies).
Output features define the accomplished tasks—which IE tasks have been
solved completely or partially. We consider whether single attributes of target
structure can be identified in text (single slot extraction) or complex facts
consisting of several attributes (template unification) can be found. A résumé
over these characteristics is given in Sec. 6.

The description of a single approach features its analysis with respect to the
proposed criteria, which is summarized at the end of the description. Sometimes

176 C. Siefkes and P. Siniakov

criteria are omitted if they are not applicable. The universally applicable criteria
concerning input requirements and considered features, learning characteristics
and accomplished tasks are used for comparison of different approaches in Sec. 6
and allow conclusions about important differences between the identified classes
of approaches in IE.

Considering the quantitative metrics precision, recall and F-measure isolated
from the testing environment may be misleading since they depend a lot on the
complexity of the target structure and training texts. Quantitative parameters
are meaningful only if the systems are tested in comparable environments, with
the same text corpus and target structure. Section 6.5 discusses quantitative
comparisons and evaluation results on two standard corpora.

2 Architecture of a Typical IE System

A typical trainable IE system follows a pipeline architecture that comprises lin-
guistic preprocessing, learning and application stage and, during the application
phase, semantic postprocessing as the three main blocks (Fig. 1). Each of them
handles a subset of steps that are particularly relevant for a pursued approach.

A text corpus including texts of the application domain and a target structure
defining what the relevant information is constitute the minimum input for an IE
system. Besides, it can be supported by additional semantic resources provided
by a human.

Preprocessing of Input Texts: Text corpora often consist of unstructured,
“raw” natural language texts. A big part of the relevant information can be
distinguished by some regularity found in the linguistic properties of texts.
Thus linguistic analysis can give helpful hints and determine important fea-
tures for identifying relevant content. Following linguistic components proved
to be useful for information extraction:
Tokenization: Starting with a sequence of characters the goal is to identify

the elementary parts of natural language: words, punctuation marks and
separators. The resulting sequence of meaningful tokens is a base for
further linguistic and any text processing.

Sentence Splitting: Sentences are one of the most important elements of
the natural language for structured representation of the written con-
tent. Binding interrelated information they are the smallest units for ex-
pression of completed thoughts or events. The correct recognition of the
sentence borders is therefore crucial for many IE approaches. The task
would be trivial if the punctuation marks were not ambiguously used.
Correct representation of a text as a sequence of sentences is utilized for
syntactic parsing.

Morphological Analysis: Certain facts are typically expressed by certain
parts of speech (e.g. names). Determining parts of speech of tokens is
known as POS tagging. Statistical systems can use POS tags as clas-
sification features, rule-based systems as elements of extraction rules.

An Overview and Classification of Adaptive Approaches to IE 177

Fig. 1. Architecture of a Typical IE System

Segmentation of compounds, recognition of flection forms and consecu-
tive normalization disclose further important morphological features.

(Chunk) Parsing: While full sentence parsing is preferred by knowledge-
based systems, some statistical approaches rely on chunk parsing—
shallow syntactic analysis of the sentence fragments performed on phrasal
level. It is justified by the fact that the extracted information is often
completely included in a noun, verb or prepositional phrase that build
the most relevant context for its recognition.

Named Entity Recognition, Coreference Resolution: Named enti-
ties are one of the most often extracted types of tokens. Some approaches
use a simple lookup in predefined lists (e.g. of geographic locations,
company names), some utilize trainable Hidden Markov Models to
identify named entities and their type. Coreference resolution finds
multiple references to the same object in a text. This is especially
important because relevant content may be expressed by pronouns and
designators (“she held a seminar”, “The company announced”). Both

178 C. Siefkes and P. Siniakov

tasks require deeper semantic analysis and are not as reliable as other
linguistic components.
While for knowledge-based and some rule-based systems linguistic pre-
processing is an element of the core system, for statistical and other
rule-based approaches it is optional but can have a serious impact on
the quality of extraction.

Learning and Application of the Extraction Model: The application
range of today’s IE systems is intended to be as wide as possible. The
features of a concrete domain cannot be hardwired in a system since the
adaptation effort to other domains is too high. Modern systems use a
learning component to reduce the dependence on specific domains and
to decrease the amount of resources provided by human. An extraction
model is defined according to the pursued approach and its parameters are
“learned” (optimized) by a learning procedure. Statistical approaches learn,
for example, relevant classification features, probabilities, state sequences,
rule-based approaches learn a set of extraction rules and knowledge-based
approaches acquire structures to augment and interpret their knowledge for
extraction. The challenge is to find an extraction model that allows learning
all relevant domain parameters using the same extraction framework for
each application domain.
Considering the problems and complexity of IE, supervised learning appears
to be the most appropriate and is the most widely used learning technique.
The majority of approaches prefer annotated training corpora albeit some
rely on human supervision during the learning stage. To assess the quality
of an approach the training text corpus is created by annotating text frag-
ments that contain relevant content and divided into two parts. One part,
the training set, is used for training (learning the parameters of the extrac-
tion model) and another, the test set, is used to test the ability of the model
to correctly extract new information it was not trained on. The test results
can also be used to improve the extraction model to perform better on new
domain texts when applied to real domain texts.
Some approaches allow further refinement of an extraction model based on
the human feedback about extractions during the application. The new eval-
uated extractions can be incorporated as new training instances and the
model can be retrained.
The learning component is crucial for an IE system, because it comprises
the algorithms for identification of relevant text parts and transferring them
according to the target structure.

Postprocessing of Output: The main motivation for IE is the structured rep-
resentation of information that enables formal queries and automatic pro-
cessing. One of the possibilities to structure the extracted data is to model
the target structure as a database relation. After the relevant information has
been found by application of the extraction model the identified text frag-
ments are assigned to the corresponding attributes of the target structure.
They can normalized according to the expected format (e.g. representation
of dates and numbers). Some identified facts may appear in text more than

An Overview and Classification of Adaptive Approaches to IE 179

once or already exist in the database. In this case, different instances could
be merged (instance unification). Finally, the identified, normalized and uni-
fied information is stored at the appropriate relation in the database. Most
current trainable systems do not yet perform much preprocessing, leaving
such tasks as future work.

3 Rule-Learning Approaches

3.1 Automatic Pattern and Template Creation

To overcome some serious limitations of classical rule-based approaches, alter-
native techniques have been developed that reduce the manual effort and the
amount of human knowledge used for the creation of extraction rules. In the
optimal case the rules are determined automatically after the information about
data to be extracted has been provided. Automatic acquisition of linguistic pat-
terns and templates partially performs this task constructing the left-hand side of
the rule and the target structure respectively. It is noteworthy that this approach
does not presuppose a fix given target structure, in fact, the target structure is
determined dynamically using provided semantic information. Therefore meth-
ods described below do not belong to the scope of fact extraction, but certainly
comprise one substantial direction of IE. As representatives for this approach
Nobata and Sekine’s system for pattern acquisition [40], a method for template
creation proposed by Collier [11] and a successor of AutoSlog-TS that accom-
plishes both tasks [44] are considered.

To compensate the lack of human interaction, syntactic and lexical resources
should be provided that sufficiently cover word semantics and disclose necessary
domain information. Therefore preclassified text corpora (Riloff) or reliable IR
technology (Collier), a thesaurus or keyword list, part-of-speech (POS) tagger
(Nobata) and named entity recognizer are required. Moreover shallow parsing is
needed for syntactic analysis. Riloff’s system is supported by a list of categories
with five seed words in each for the creation of semantic lexicon and by a set
of template slots (roles) mapped to corresponding categories. In all systems hu-
man inspection of intermediary or final results serves for quality assurance and
learning purposes.

Pattern acquisition: Methods for automatic pattern acquisition have in com-
mon that the acquired patterns have a simple syntactic structure and the final
set is selected from a large amount of initial candidate patterns iteratively us-
ing heuristics and statistical methods. The accent of Nobata’s system lies on
finding patterns describing certain events—an overview of the process is given
in Fig 2. Actual information extraction is a direct mapping of ordered lexical
items matching acquired pattern to fix template slots. Patterns are acquired
by consecutive selection of text fragments and final merging of ordered lexical
items in similar sentences. Articles are retrieved by scenario relevant keywords
from a large untagged corpus, which are filtered by subject line. Selected articles
are POS-tagged and named entities (NE) are recognized. Every sentence in the

180 C. Siefkes and P. Siniakov

Fig. 2. Overview of Nobata’s algorithm (from [40])

selected articles is regarded as initial pattern. Final patterns are acquired by
merging lexical items and named entities of two similar sentences. Sentences are
considered similar if they have the smallest amount of different items. Merging
is facilitated by either ignoring extra items of one of the patterns or creating
clusters of different items of both patterns. The merging process is repeated iter-
atively until the biggest possible generalization is achieved. In a later work [57]
a tree representation for patterns is proposed to better account for dependency
structures of syntactic patterns and to cope with the problem of free word order.

Riloff’s system uses AutoSlog-TS for the generation of patterns [43]. It is
guided by an assumption that the items to be extracted are comprised by noun
phrases, therefore it uses heuristics to create linguistic patterns that represent
relevant context for extracting of a given noun phrase (NP). These should be
general enough to extract other relevant NPs as well. Typical patterns would
be <subject> exploded; exploded in <noun-phrase>. They are activated by a
keyword and information to be extracted is contained in a syntactic constituent
of the pattern clause. In the first stage patterns are generated that collectively
extract every noun phrase from the training text. In the second stage their
relevance in the examined domain is estimated and a ranking of patterns is
produced. The pattern score depends on the number of extracted NPs also found
in semantic lexicon for examined domain and on their percentage among all
extracted NPs. After human review the best patterns are selected to extract
relevant information.

Template generation: The idea of generating target structure automatically may
appear somewhat surprising since humans are primarily interested in and deter-
mine what should be extracted. However, it is motivated by the fact that the
number of templates can be considerably large and therefore difficult to manage.
Generation of templates is guided by semantic constraints provided to the system
in form of categorization of domain entities in a semantic lexicon or thesaurus.

Riloff’s system [44] constructs the semantic lexicon taking only a list of cat-
egories with five seed entries as input. Context of the seed words is regarded for

An Overview and Classification of Adaptive Approaches to IE 181

each category and the words in context are scored. The score is basically the
conditional probability that the word appears in category context. The top five
are added to the category list and the process is continued iteratively. After sev-
eral iterations a user corrects the list and approves the lexicon. After acquisition
of patterns described above and lexicon creation semantic profiles of patterns
are established. The correlation between a pattern and a domain category (se-
mantic preference) is expressed based on extracted items. Therefore patterns
are applied to relevant domain texts and assigned to categories depending on
extracted NPs. These assignments serve later as constraints for the assignment
of extracted items to template roles.

Another important source of semantic information provided by the user is the
functional dependency between semantic categories and domain roles (template
slots). It is based on a reasonable assumption that members of a category can
fulfill only one role but one role can be fulfilled by entities of several categories.
During extraction the role is assigned according to the semantic preferences
(prevalent semantic categories of extracted items) determined earlier. A pattern
can extract words of different categories and thus different roles. The presented
patterns have a serious limitation extracting only one syntactic constituent and
filling therefore only one template slot. To consolidate scattered information
patterns that share the same trigger word and compatible syntactic constraints
are merged into single pattern. Such a generalized pattern is able to extract items
of several roles and creates a multi-slot template as the result of extraction. Hence
templates are not fix but can comprise any subset of the set of roles. Giving the
system the set of roles only sketches the scope of possible target structure while
its actual creation is based on described algorithms.

Collier’s approach proposes template creation on a pretty general level using
syntactic information and statistical techniques. It identifies three types of in-
formation contained in texts, which are relevant for template creation: objects,
their interactions and features. Named entities are considered as important ob-
jects and the assumption is made that fundamental objects can be found in every
relevant domain text. Their identification can be facilitated by existing NE rec-
ognizers. Coreferences can be another source for object recognition. Interactions
are expressed by verb/subject/object relationships on sentence level. Consider-
ing the categories of verbs (obtained from a thesaurus) classes of relationships
can be established. Such a class would correspond to a template while features
would be mapped to template slots. Relevant features can be found by looking on
entities occurring not in every document, consulting thesauri, analyzing n-grams
and collocations and using other statistical methods.

The main advantage of automatic creation of patterns and templates is obvi-
ous just by looking at the name of this approach. Provided with initial domain
and semantic information, the described algorithms solve the problem of IE by
generating patterns and templates and partially also extraction mechanisms.
The algorithms include no or occasional human interaction and rather small hu-
man support involving basically review of obtained results. There is not much
pre-processing and additional resources required for this approach, no deep syn-

182 C. Siefkes and P. Siniakov

tactic analysis is necessary. Many subtasks (e.g. creating patterns and semantic
lexicon) are solved using robust statistical methods. Generally, presented ap-
proach achieves successful results using quite simple comprehensive techniques.

Due to automatic processing researchers restricted the syntactic structure
of patterns to be very simple, which is a serious limitation since many relevant
facts are expressed in a complex linguistic context with complicated syntactic
structure. Facts expressed over multiple sentences remain uncovered. Therefore
such patterns cannot be applied to every domain. Since human influence during
the runtime is very restricted, the quality of final results depends very much
on the quality of semantic information provided at the beginning. Especially
the demands on domain specification by categories and roles have to be very
detailed and precise. Because of functional dependency between a semantic cat-
egory and a role wrong slots may be generated, which leads to an adulterated
target structure. Another big problem is unknown words (not occurring in the
training texts) since heuristics are necessary to decide which role to assign. Addi-
tionally, Nobata’s system suffers from the choice of sentences based on keywords
that may fail because of noise or polysemous keywords. Besides, generalization of
patterns is quite limited since, while matching a pattern, clusters of items have
to be searched for a matching element, which corresponds to matching against
many patterns. Collier’s assumption that relevant objects occur in all documents
is also very arguable.

Generally, this approach can be applied to domains and languages where de-
sired information is expressed by facts with simple syntactic structure. Although
the described techniques are primarily designed for information extraction other
areas involved in creation of lexical resources or translation may use them to
solve related tasks. This approach is promising because of its main advantage,
many weaknesses are not inherent and can be overcome in the future.

3.2 Covering Algorithms

A number of IE systems are based on covering (separate-and-conquer) algorithms
[25], a special type of inductive learning. These systems require a predefined
target structure, they do not create it. Except for Whisk, which employs active
learning, they also require a set of fully tagged training texts where all text
fragments that fill a certain slot in the target structure are marked. Based on this
input, the systems learn rules that extract the tagged slot fillers. After learning
rules that cover a part of the training instances, they remove (separate) these
instances from the training set and continue to learn rules that cover (conquer)
some of the remaining instances, looping until all or most of the training instances
are covered. What is regarded as an instance and which features are considered
depends on the system.

Crystal: Crystal [56, 52] builds on a chunk parser that identifies syntactic con-
stituents (subject, verb phrase, direct and indirect object, prepositional phrases)
and a domain-specific dictionary that specifies semantic classes for all words.
Crystal looks for constituents that fit predefined conceptual types (e.g. diagno-

An Overview and Classification of Adaptive Approaches to IE 183

sis, symptom) and subtypes (a diagnosis is either confirmed, ruled-out, suspected,
pre-existing, or past).

The definitions learned to extract subtypes identify a constituent to extract if
certain constraints are fulfilled by the surrounding constituents. Constraints may
test for word sequences contained in a phrase or for semantic classes of the head
noun or a modifier of a phrase. For example, an “absent symptom” is extracted
from the direct object if the head of the direct object is of the class [Sign or
Symptom], the verb is “denies” in the active voice, and the subject includes the
word “patient” and has the head class [Patient or Disabled Group]. Negative
constraints are not supported.

In a later work [55], the problem of negation is solved by learning different
kinds of semantic relations (classes) in a predefined order. Rules for “absent . . . ”
are learned (and applied) first. The examples covered by these rules are removed
prior to learning rules for “present . . . ”. Thus specialized rules like verb group
includes “not observed” can be learned for the absent case, and general rules like
verb group includes “observed” for the present case (without a predefined order
this is not possible, because the general rule covers both cases).

Crystal learns suitable definitions by generalization, i.e. bottom-up: each
training instance is used as a highly constrained initial definition. Crystal tries to
unify “similar”definitions by relaxing constraints. The similarity metric is based
on the number of constraint changes necessary to unify definitions.

Two definitions are unified by finding the most restrictive constraints that
cover both. For semantic class constraints the most specific common ancestor in
the semantic hierarchy is used; for word constraints the subset of words contained
in both constraints is kept. If there is no common ancestor or the subset is empty,
the constraint is dropped. The new definition replaces the original ones if the
number of false positives it extracts is below a defined error threshold—increasing
this threshold results in higher recall at the cost of precision (and vice versa).

For multi-slot extraction Crystal treats each subset of slot combinations as
a concept to be learned—this can result in data sparseness. Crystal does not
extract exact phrases, it only identifies a constituent to extract from. These are
the major limitations of the system.

Whisk: The Whisk system developed later by the same author [54] is aimed
at handling a larger range of texts, from free texts as found in newspapers and
books to semi-structured texts (often ungrammatical or in “telegram style”) that
are common on the World Wide Web or in advertisements.

Whisk is targeted at multi-slot extraction at the sentence level. The learned
rules are a kind of regular expressions. Expression pattern can contain verbatim
text, character classes (e.g. digit, number), and wildcards like “*” which lazily
skips any characters until the next part of the pattern can match. In addition
to the hard-wired character classes, semantic classes of equivalent terms can be
defined by the user, e.g. a class Bdrm that contains different forms and abbrevia-
tions of the term “bedroom.”Parentheses indicate a phrase to be extracted. The
Output part of a rule specifies where to store the extracted phrases. “Pattern:: *

184 C. Siefkes and P. Siniakov

(Digits) Bdrm * ‘$’ (Number). Output:: Rental {Bedrooms $1} {Price $2}.”
is a rule to extract the number of bedrooms and the price from a rental ad.

When processing free (grammatical) text, each sentence is split into the fields
returned by the chunk parser (subject, verb etc.); these fields can be specified
in the regular expressions to constrain matching (but still the whole expression
must match left to right, so the ordering of fields matters). Additional semantic
classes are defined that match the output of a named entity recognizer (person,
company etc.).

Rules are derived top-down (starting with the most general rule) by a covering
algorithm. For judging the quality of rules, Whisk uses the Laplacian expected
error: Laplacian = e+1

n+2 , where n is the number of extractions made and e is the
number of errors among these. In case of a tie, the more general rule is used.
The found rules might not be optimal due to the limitations of hill climbing—
each specialization is evaluated in isolation, so if two specializations (adding
two terms) must be applied together to yield a better rule (according to the
Laplacian), they will not be found.

Whisk incorporates active learning, so only a small part of the training corpus
needs to be tagged in advance. The system proceeds by selecting three kinds of
untagged instances for hand-tagging by the user: instances covered by a rule
(which will either increase the support of the rule or force further refinement),
“near misses” (to check and adapt the boundaries of rules), and a random sample
of instances not covered by any rule (to check whether there are still rules to
discover).

A disadvantage is that semantic classes must be predefined by the user, they
are not learned by the system. Another drawback is the strict ordering con-
straints of each rule—different rules must be learned for each possible arrange-
ment of slots.

(LP)2: (LP)2 [9] learns rules to add SGML/XML tags to a text. (LP)2 is based
on tagging rules that insert a single (starting or ending) SGML tag into the text.
This means that the task of each rule is to recognize the start or the end of a
supposed slot filler in the text, not to extract/tag a whole slot filler (or several
slot fillers) at once, as in most other systems.

The tagging rules are learned from the hand-tagged training corpus. Rules
are learned bottom-up, taking an instance as an initial rule whose constraints
are subsequently relaxed (e.g. requiring only a lexical class instead of a specific
word) or completely dropped. The k best generalizations of each initial rule
found by a beam search are stored in a “best rules pool.” As (LP)2 is a covering
algorithm, the training instances covered by a rule in this pool are removed from
the training set.

(LP)2 proceeds in four steps:

1. The tagging rules from the “best rules pool” are applied.
2. Contextual rules are applied to resulting text. These are tagging rules whose

overall reliability was not high enough for the best rules pool but that per-
form better when restrained to the vicinity of tags inserted in the first step

An Overview and Classification of Adaptive Approaches to IE 185

(for example, a rule that inserts an end tag is applied provided that a corre-
sponding start tag occurred some words before).

3. Correction rules do not add or delete tags, they only change the position of
a tag, moving it some words forward or backward.

4. Finally, invalid markup (unclosed tags etc.) is deleted in a validation step.

In the Amilcare system, (LP)2 is employed in a “LazyNLP”setting where the
amount of utilized linguistic information can be dynamically adjusted [10]. The
learner initially induces rules without any linguistic knowledge; then it iterates
adding linguistic information (provided by third-party components), stopping
when the effectiveness of the generated rules no longer increases. The adequate
amount of linguistic input is learned for each type of slot separately (e.g. rec-
ognizing a person name might require more NLP input than recognizing a date
or time).

(LP)2 is targeted at slot filling and does not perform any template unifica-
tion. In Amilcare a shallow discourse representation module is added for this
purpose [26, Sec. 5]. Slot fillers are unified in templates or subtemplates with
the nearest preceding slot fillers of a suitable type. E.g. when describing hotels,
address data and room types (single room, double room) will be attached to the
last mentioned hotel; price information might in turn be attached to the last
mentioned room type.

3.3 Relational Rule Learners

The basic approach of the systems presented in this section is similar to those
of the previous section—indeed, they are based on covering algorithms too. The
main difference is that the systems presented here explicitly take relations—
especially positional relations—between a (potentially unlimited) number of fea-
tures into account, while those in the previous section are limited to predefined
(finite) combinations of features.

Rapier: The Rapier [4, 5] system uses syntactic (POS tags) and semantic (Word-
Net classes) information to induce rules for slot fillers. Each rule consists in three
parts, a pre-filler pattern, a pattern for the actual slot filler and a post-filler pat-
tern. Each pattern contains an ordered list (whose length might be zero for
pre/post-fillers) of constraints that restrict the POS tag, the semantic class,
and/or the word itself (disjunctions are allowed). Instances are most specific
rules with all their constraints set. The pre- and post-filler patterns of instances
contain every word from the start resp. to the end of the document, there is no
“context window” of limited length.

New rules are created by randomly selecting two rules and creating the least
general generalization for the filler pattern. Actually, there are several reasonable
generalizations (different values of a constraint can be disjuncted or the con-
straint can be simply dropped), so each of these generalizations is re-specialized
by adding generalized pieces of the pre- and post-filler patterns of the original
rules. A list of n best candidates is kept until the best generalization is found,
based on the evaluation metric

186 C. Siefkes and P. Siniakov

ruleVal = − log2

(
p + 1

p + n + 2

)
+

ruleSize
p

,

where p is the number of correct extractions and n the number of erroneous
extractions; ruleSize is calculated depending on the number of pattern items,
lists, and disjuncts in a rule.

Semantic classes are generalized by finding the nearest common ancestor in
the WordNet hypernym hierarchy (dropping the constraint if no common ances-
tor exists). Instances covered by the found best generalization are subsequently
ignored and further rules are learned based on the other instances.

Rapier has been extended to use active learning [58]. The system is initially
trained from a small number of annotated examples. Then it tries to annotate a
large number of untagged examples, selecting those examples whose annotation is
least certain (certainty-based selective sampling). After the user has annotated
the selected examples, the system is incrementally retrained and the process
continued. Rapier does not provide probabilities, so the certainty of a rule is
estimated based on its coverage: pos − 5 × neg, where pos is the number of
correct extractions on the training data and neg the number of incorrect ones.
The active-learning version requires approximately half the examples to reach
the performance level of Rapier without active learning.

SRV: SRV [21] considers any combination of simple features (mapping a token
to a value, e.g. word length: 5, character type: alpha, orthography: capitalized, POS
tag: noun, semantic class: geographical-place) and relational features (mapping a
token to another token, e.g. next-token, subject-verb). Feature values can be sets,
e.g. all synonyms and hypernyms (superordinate concepts) listed by WordNet are
combined in a set for each token. SRV performs only a two-class classification, i.e.
different rule sets are learned for classifying each text fragment as an instance or
non-instance of a single slot filler—there is no component for template unification
or other postprocessing.

The learning algorithm is similar to the relational rule learner FOIL [42].
SRV learns top-down, greedily adding predicates of some predefined types: the
number of tokens in the fragment (length), whether a condition is matched by
one or several (some) or by all (every) tokens in the fragment; position specifies
the position of a token in a some predicate, relpos constrains the ordering and
distance between two tokens. The some predicate can be constrained by rela-
tional features, for example, some(?A [prev tok prev tok] numeric true) means:
there is some token in the fragment preceded by a numeric token two tokens
back.

Rules are validated and their accuracy estimated by three-fold cross valida-
tion. The three resulting rule sets are then merged. The accuracy estimations
are available for each prediction.

An advantage of relational learners is their being able to acquire powerful
relational rules that cover a larger and more flexible context than most other
rule-learning and statistical approaches. The downside is that the large space of
possible rules can lead to high training times and there is no guarantee of finding
optimal rules (local maxima problem).

An Overview and Classification of Adaptive Approaches to IE 187

3.4 Case-Based Approaches to IE and Knowledge Acquisition

To identify semantic and syntactic word features, knowledge-based approaches
rely on manually prepared world knowledge while statistical approaches are only
guided by regularities and patterns found in the training corpus. Case-based
approaches combine the advantages of both by accumulating knowledge only
from the training corpus and using previous experience to handle new words.
The case-based method suggested by Cardie [6] needs therefore no explicit dis-
ambiguation heuristics, but domain knowledge provided at the initial stage. It
includes knowledge about plausible parts of speech, word senses and contexts in
a given domain. The training phase is supervised by a user. The system solves
three independent tasks: POS assignment, word sense disambiguation and de-
termination of the word concept (category of the word). Processing of training
texts results in a case base of cases comprising these three types of information
for each non-functional word in the training corpus. The case base is used to
perform the tasks described above in new domain texts with unknown words.

Case base is constructed by acquiring a case for each occurrence of any non-
functional word in different context while parsing sentences of the training set.
A case summarizes the actual word features and features of its context. Word
features describe part of speech, general and specific word senses and concept,
context features include word features of two preceding and following words and
the parser state before processing of the current word. To define features of the
current word the human user is consulted. For the specification of the context
features of two preceding words case base is queried, the features of two following
words are added after the parser reaches them.

When a new text is processed, sentences are parsed and the context features
are identified in the same way. To identify the current word, the features of the
most similar cases are retrieved from the case base. Feature values that occur in
retrieved cases most frequently are selected to be the features of the new word.
Similarity of cases is measured by k-nearest-neighbors metric. Subsets of case
features that are relevant for determination of the value of each word feature
are identified using decision trees. For each word feature the relevant subset of
the context features of the currently processed word is compared with the same
subset of context features of cases in the case base. The more equal feature values
are found the more similar are the cases. Since similarity is influenced only by
context features, the assumption is proposed that the context is the only factor
that defines all three types of knowledge for a word.

The approach benefits from the fact that there are no fix word-concept pair-
ings and a much more realistic dependency of concept of the word on context
is assumed. Syntactic and semantic knowledge is learned simultaneously and
stored in one composite structure—the case. Source of domain information can
be human or semantic lexical resources, which makes the training of the system
easier.

From the point of view of IE, category of a word and its sense are a very
sparse“target structure”. Semantics are revealed not on a sentence, but on a word
level. Besides, it is arguable whether the context can be captured adequately by

188 C. Siefkes and P. Siniakov

regarding a static context window of 4 words. The assumption of exclusive role
of context in determination of word features is simplistic.

An interesting perspective is the extension of this approach to work on the
sentence level with cases summarizing sentence features, which would make solv-
ing more complex IE tasks such as fact extraction possible. Generally, similar
problems in IE have similar solutions, therefore case-based reasoning methods
are likely to be very promising for the future of IE.

3.5 Wrapper Induction

Stalker: The approach of Wrapper Induction (WI) is mainly targeted at struc-
tured and semi-structured documents that were generated automatically, e.g.
Web pages offering products of listing information. The Stalker algorithm [37]
covers documents that can be described in the embedded catalog (EC) formal-
ism. This formalism represents a document as a tree whose leaves contain the
relevant data (items of interest for the user). The inner nodes contain lists of
k-tuples (e.g. of restaurant descriptions). Each item in a tuple is either a leaf or
another (embedded) list.

Extraction is based of the EC description of a document and an extraction
rule that extracts the contents of each node or tuple from the contents of its
parent. List nodes require an additional list iteration rule that splits the list into
tuples.

Extraction rules are based on groups of successive tokens called landmarks.
Start rules locate the start of an item by find the first matching landmark
from the begin of the parent; end rules locate the end of the item by finding
the last matching landmark before the end of the parent. The text matched
by a landmark itself can either be included (SkipUntil condition) or excluded
(SkipTo condition) from the item text. Rules can combine several conditions,
e.g. SkipTo(Name) SkipTo()’ means that the item starts immediately after
the first HTML tag that follows the word Name. They can refer to specific
tokens or to wildcards like Number, Punctuation, or HtmlTag.

Disjunctions (either . . . or) are allowed to handle formatting variations. Dis-
junctions are ordered so the first successful match is used. Each node is extracted
independently of the other nodes within its parent, so no fixed ordering is re-
quired.

Rules are learned by a covering algorithm that tries to generate rules until
all instances of an item are covered (without false extractions, if possible) and
returns a disjunction of the found rules. Rules with fewer false extractions (or
more correction extractions, in case of a tie) are preferred when ordering the
disjunction.

To support active learning, Stalker has been embedded in a Co-Testing ap-
proach [38]. Co-Testing combines a number of views that independently learn to
recognize slot fillers. In the Aggressive Co-Testing approach, views can either be
strong (they can learn how to reliably recognize slot fillers) or weak (they might
learn either more general or more specific concepts, i.e. might either miss some
instances or extract spurious instances).

An Overview and Classification of Adaptive Approaches to IE 189

Stalker is used as a strong view. Stalker’s learning how to recognize the begin
and end of a slot filler is complemented by a weak view that learns patterns
to recognize the content of a slot filler (length range, contained token types
etc.). The content recognizer is a weak view because it learns concepts that
might be more general than the target slot filler, e.g. it cannot discern a phone
number from a fax number. A second strong view is provided by running Stalker
backwards, starting from the end of the document (BackTo instead of SkipTo).
Predictions are combined by majority voting: When both strong views agree, the
weak view is ignored; otherwise the prediction of the strong view that violates
fewer constraints of the weak view is chosen.

Boosted Wrapper Induction: Typical WI algorithms such as Stalker are only
suited for documents whose structure and layout are regular and consistent.
They are inadequate for free text, where information is mainly expressed in
natural language. The BWI (Boosted Wrapper Induction) system [22] aims at
closing this gap and making WI techniques suitable for free text.

The rules learned by BWI are simple contextual patterns for finding the start
and end of the field to extract. A pattern has two parts: a token sequence that
immediately precede/follow the field to extract (outside) and a token sequence
starting/ending it (inside). E.g. to identify the speaker’s name in a seminar an-
nouncement, the pattern <[who :] [dr .]> would locate the start of all entries
introduced by Who: and starting with the honorific Dr.. Patterns can also con-
tain wildcards, e.g. <Alph>/<ANum>/<Punc> match tokens that contain only
alphabetic/alphanumeric/punctuation characters, while <*> matches any to-
ken.

Such specialized simple patterns will often reach high precision but low re-
call because there are many other ways to express a fact, especially in natural
language texts. To address this issue, a large number of simple patterns are
learned and their results combined. For this purpose BWI applies the technique
of boosting, i.e. repeatedly applying the learning algorithm to the training data,
each time adjusting the weight of training examples to emphasize those examples
where the algorithm failed before.

A wrapper learned by boosting consists in a set F of “fore” and a set A of
“aft”detectors (patterns that detect the start and the end of a field) and a length
function H(k) that estimates the maximum-likelihood probability that the field
has length k. A text fragment < i, j > is extracted if F (i)×A(j)×H(j − i) > τ .
A trade-off between precision and recall is possible by varying the threshold τ .
Generally, BWI is biased toward precision, so setting τ = 0 results in a reasonable
recall at still high precision.

While one of the goals of BWI is to make WI algorithms suitable for free
(unstructured) text, BWI still performs significantly worse on free text than on
highly or partially structured text [27]. Most detectors learned from free text
merely memorize specific training examples [27, Sec. 4.2.3]. Also the algorithm
is biased towards overfitting to the particularities of the training data—the final
rounds of boosting actually lower the reliability of the results. Both precision
and recall on free texts can be increased by incorporating the output of a shal-

190 C. Siefkes and P. Siniakov

low parser into the model, splitting the text into a number of noun, verb, and
prepositional phrase segments [27, Sec. 8.1].

3.6 Hybrid Approaches

IE2: The IE2 system [1] submitted by SRA International to the MUC-7 confer-
ence is built in a highly modular way. The output of a standard named entity
recognizer is complemented by a custom component that recognizes domain-
specific entities (e.g. different kinds of vehicles). Another component recognizes
domain-specific types of noun phrases and relations between them (e.g. em-
ployee of, location of). Both these components are based on hand-written rules,
no learning is involved.

However, the IE2 system goes further than most approaches described in
this paper in also handling template unification beyond the sentence level. For
coreference resolution, different strategies are employed: one strategy uses sim-
ple hand-written rules, but another one learns decision trees (using the standard
implementation C50) from a tagged corpus. Optionally these strategies are com-
bined in a hybrid method where the decision tree algorithm works on a subset
of possible candidates chosen by the hand-written rules.

IE2 also handles event merging, i.e. deciding whether or not two descriptions
refer to the same event and can be merged. Here hand-written rules are combined
with external knowledge sources to check the consistency of locations (Miami is
in Florida) and times (can Wednesday and tomorrow refer to the same day
within the current text?).

While in most aspects IE2 is a typical representative of the classical hand-
written rules approach that was dominant in the MUC conferences, its hybrid
nature has interesting traits. Template unification and event merging beyond the
sentence level are complex challenges that so far have been largely out of reach for
learning systems. Combining trainable modules with external knowledge sources
and specialized hand-written code could be a viable approach to tackle problems
where single-paradigm solutions fail.

4 Knowledge-Based Approaches

4.1 Translation of Texts into Horn Clauses

One of the main purposes of IE is to make efficient search and transactions on
extracted information possible. Therefore one of the central requirements on the
target structure is an efficient querying mechanism. Another important issue is
how expressive a target structure is. A relational target structure can for instance
express only facts described by predicates but no conjunctions or disjunctions.
The approach suggested by Delisle et al. [13] envisions Horn clauses as the rep-
resentation resource of the target structure. Such a target structure is more
expressive and more powerful in comparison with a relational target structure.
Horn clauses allow conjunctions and implicit disjunctions and can be used to

An Overview and Classification of Adaptive Approaches to IE 191

infer new facts, draw inferences about extracted information or build a domain
theory. Generally, any logical techniques can be applied to this representation.

Since the extracted information is presented in logical form the application of
this approach can be regarded as knowledge extraction. Remarkably, the infor-
mation is extracted exhaustively, that is, everything identified as information is
extracted. Such an approach differs significantly from fact extraction paradigm
since neither a fix target structure is available nor any focus on items of interest
can be given. However, this approach still can be related to IE since relevant (in
this case all) information is found in an unstructured text and transferred into
formal structure.

The approach does not presuppose any external knowledge sources except
for continuous human interaction. To start semantic analysis, shallow parsing
of the text is necessary. Parsed sentences are matched against a growing set
of (potentially learned) cases. A case is a semantic interpretation of certain
syntactic patterns, more precisely, an interpretation of dependencies between
the verb and its arguments within a clause produced by a parser. Examples of
cases are Agent, Accompaniment, Location to, Time at. The best match and thus
semantic interpretation is suggested by a case analyzer and either confirmed or
corrected by the user. If a significantly different structure of a clause (primitive
sentence) is detected (compared to those stored in case pattern list), a new case
is stored. Case assignment relies on a hypothesis that “syntax gives a reliable
indication of meaning” (at least in examined technical texts).

At the beginning no predefined case patterns are necessary, however, user
interaction increases in this case. Bigger elements of a sentence (clauses) are
then matched against a restricted number of predefined patterns (causation,
prevention, disjunction. . .) to identify their semantic relationship. The conjunc-
tion between the clauses plays thereby a significant role. Every time a match
is found it is suggested to the user for confirmation. Additional syntactic infor-
mation is regarded to label dependencies between the clauses. Source of domain
information is the user. Cases are not assigned to “stative clauses” (clauses of
form of the verb to be). These are processed directly by creating correspond-
ing predicates. Translation from found semantic dependencies to Horn clauses
occurs after clause dependencies, cases in the clauses and semantics of nouns
(determined with WordNet) have been completely analyzed. Identified cases are
translated into predicates reflecting the pattern structure of the case. Clause
dependencies suggest how to piece together the Horn clause. For example, the
sentence “Jim is a resident of Canada because he is serving abroad in the armed
forces” would be transformed into:

is resident of(jim, canada) :- serve agt lat benf(jim, abroad, armed forces).
Identified Horn clauses are passed to the EBL (explanation based learning) mod-
ule for building of domain concepts and developing domain theory.

The biggest strength of this approach is the resulting expressive and powerful
target structure, which allows plenty of possibilities for further processing. The
idea to directly transform identified cases into predicates and compose the Horn
clause according to found clause relationships is very beneficial for the approach.

192 C. Siefkes and P. Siniakov

Since cases and clause relationships already contain semantic dependencies, Horn
clauses can be constructed in a very efficient and consistent way. However, the
way semantic relationships are derived from syntactic patterns is quite critical
because the underlying assumption does not always definitely hold; especially, it
is hardly applicable to other languages. Besides, case matching may fail as many
clauses would be semantically ambiguous because of interpretation by syntactic
structure.

The considerable involvement of human user is advantageous on the one
hand since the system gets reliable information, but on the other hand may
cause much effort given a text with big variety of case patterns. However, the
learning component successfully applies learned cases and case triggers so that
the amount of human interaction reduces with time. Another learning unit based
on EBL is used in the last stage of processing Horn clauses.

The algorithm is explicitly designed for knowledge acquisition task and can
hardly be applied to any other NLP tasks without serious modifications. Giving
up the basic assumption and extending case patterns to include lexical data
would possibly make it applicable to other languages. Since the main source of
domain information is the user and no assumptions are made about the domain
properties (except for technical texts) this approach could easily be adapted to
various environments.

4.2 Ontology-Based Extraction

The goodness of the initial semantic and syntactic domain description is crucial
for any rule and knowledge-based approach to IE. Usually this domain infor-
mation does not represent any abstract logical dependencies and relations in
the domain, since it is trimmed to IE purpose excluding comprehensive ele-
ments. Embley et al. [15] chose the ontology as one of the most explicit and
complete knowledge representation forms trying to employ its possibilities to
express deeper semantic relations.

However, using the ontology imposes some restrictions on the kind of pro-
cessed texts: they have to belong to a quite narrow domain and contain many
constants, which can potentially be extracted (e.g. proper names, numbers). The
extraction algorithm relies on the existence of a manually created ontology; el-
ements of the ontology cannot be used directly. Consequently tools for parsing
and transforming the ontology in suitable form are required.

The user does not provide an explicit target structure. An ontology parser
creates a relational database schema that serves as the target structure for con-
secutive extraction. Since the same ontology is used for all texts in a certain
domain and the parser output is deterministic, one can conclude an existence
of predefined, fix target structure, even though it has to be derived anew from
the ontology for each domain. The parser produces also a list of constants and
keyword rules that describes properties of relations in the ontology and their
attributes or their occurrence in text. Possible value range and text occurrence
are specified as a regular expression.

An Overview and Classification of Adaptive Approaches to IE 193

In the next step regular expressions are applied to the text to identify relevant
items. One expression matches potentially several times, therefore matching text
fragments are temporarily kept in a list for “candidate extractions”. The decision
whether an item will be extracted and what item will be chosen if there are several
candidates is guided by heuristics. Heuristics test candidate items for proximity of
a relevant keyword, overlapping etc. The item that is the next to a keyword and in
case of overlapping items the subsuming one is chosen. If an ontology allows many
values for an attribute of a relation all found matches are inserted. Otherwise, if
the criteria mentioned above are not applicable, the first one is extracted and the
rest ignored. The output is a database with extracted items.

In this approach the ontology represents the only resource and knowledge
bundle necessary to process every text of the described domain. The possibil-
ity to derive necessary rules or information for extraction from the ontology
makes the approach flexible. An ontology contains also predicates describing en-
tity relationships between entities and inference rules. This additional semantic
information can be used for more reliable identification of desired facts in a text.

However, the structure of the ontology used in this approach goes far beyond
the conventional notion including representational aspect and regular expres-
sions. It is basically a collection of related resources. The extraction suffers from
the fact that regular expressions cannot match non-trivial natural language ex-
pressions or whole sentences because of their complexity, so some items will
not be extracted because they cannot be identified. Moreover, the used regular
expressions are not changed or updated according to the results of extraction,
learning mechanisms are not employed. Manual creation of ontologies is very
tedious and hard to manage for bigger domains.

In the current form the ontology-based approach can handle listings, enu-
merations, generally preformatted text elements, but not complete sentences. It
can be enhanced if creation of regular patterns is not static and manually spec-
ified, but can be dynamically influenced by the semantic level of the ontology.
Currently the subject of extraction is mainly numbers and proper names. To
cope with the variety of natural language the system should be able to extract
other parts of speech. Changing elements of an ontology based on the extraction
results would ease the adjustment of the ontology to domain texts.

4.3 Thesaurus-Based Extraction

The TIMES system developed by Bagga and Chai [2] requires a number of knowl-
edge sources: the WordNet thesaurus, a general English dictionary, a domain-
specific dictionary, and a gazetteer of location names. Texts are preprocessed
with a tokenizer, a sentence splitter, an entity recognizer that identifies named
and numeric entities, and a partial parser that recognizes noun, verb, and prepo-
sitional groups with their respective head words. The preprocessing components
are based on finite-state rules.

Training is done by a user through a graphical interface. For each of the head
words identified by the parser, the user selects the appropriate sense (concept)
if WordNet defines several senses for this word. Then the user builds a semantic

194 C. Siefkes and P. Siniakov

network to represent the content of each training text. Selected head words from
the text are stored as nodes or relations within the network. For example, from
the phrase IBM Corp. seeks jobs candidates in Louisville, the user might build a
relation seek between two nodes IBM Corp. and job candidate.

The text-specific extraction rules created this way are then generalized ac-
cording to the hypernym/hyponym (super-/subordinate terms) relations defined
in WordNet. Generalization replaces a term by its hypernym n steps higher in the
WordNet hierarchy. For named entities (NE), the category determined by the NE
recognizer is generalized. E.g. IBM Corp. is identified as a company—generalizing
this concept one step yields business, concern; three steps yields organization. A
generalized rule matches any terms that are hyponyms of the generalized term.
Increasing the generalization level results in higher recall at the cost of precision,
because the generalized rules find instances missed by specialized rules but also
produce more false positives.

In later versions of the system, the user only has to mark the target informa-
tion to extract from a text. The system automatically builds relations between
the marked information and generalizes extraction rules to the most suitable
level [7].

The hypernyms of a word are sense-dependent. Rules for sense disambigua-
tion of head words are learned from the user-provided word senses [7]. Rules for
selecting a word sense contain a number of constraints for the phrases in the
context of the word to classify. Each constraint (match function) determines the
syntactic type (noun, verb or prepositional phrase) of a phrase and the token
value, semantic type (named/numeric entity type) and word sense of its head
word. More general rules contain fewer constraints. The system retains only rules
whose precision (ratio of correctly identified word senses) on the training data
exceeds a predefined threshold. When several rules fire, the rule with the highest
precision wins; when none fires, the most frequent word sense is chosen.

5 Statistical Approaches

5.1 Probabilistic Parsing

The SIFT system [35, 36] submitted to MUC-7 is one of the earliest statisti-
cal approaches to IE. The system simultaneously handles part-of-speech (POS)
tagging and parsing (syntactic annotations) as well as NE recognition and the
finding of relationships (semantic annotations), so the results of each task can
influence the others. Relationships link two entities of different types, e.g. in GTE
Corp. of Stamford there is a location-of relation between the company and the city.
The system was trained from the Penn Treebank corpus (1,000,000 words) for
syntactic annotations and a domain-specific annotated corpus (500,000 words)
for semantic annotations.

Tasks are primarily performed at the sentence level. In a final step, entity
coreferences are resolved beyond the sentence level (trained from coreference
annotations of the semantic corpus) and cross-sentence relationships are estab-
lished.

An Overview and Classification of Adaptive Approaches to IE 195

The domain-specific corpus requires only semantic tagging (entities, corefer-
ences, relationships), no syntactic annotations. After training the syntax model
from the Penn Treebank, it is applied to the domain-specific corpus to produce
parses that are consistent with the semantic annotations. The result is a single
parse tree that contains both syntactic (e.g. S: sentence, VP: verb phrase) and
semantic (e.g. per: person entity, emp-of: employee-of relationship) annotations.
The sentence-level model is then retrained on the resulting joint annotations
to produce an integrated model of syntax and semantics. Named entities are
recognized by a Hidden Markov Model.

The statistical model predicts the categories and POS tags of constituents
based on the data from the parse-tree context. The category of a head constituent
depends on the category of the parent node; of a modifier on the category of the
previous modifier and the parent node and its head constituent as well as on the
head word itself. The POS tag of a modifier depends on the modifier itself and
on the head word and its POS tag.

The probability of a whole augmented parse tree is the product of the prob-
abilities of all components. The most likely augmented parse tree is found by
a chart parser that proceeds bottom-up. Dynamic programming techniques and
pruning are used to keep the search space feasible. Maximum likelihood estimates
for all probabilities are obtained from the frequencies in the training corpus, us-
ing Witten-Bell smoothing to compensate data sparseness.

For determining whether a relation exists between two elements in different
sentences, the cross-sentence model calculates the probabilities that a relation
does or does not exist and chooses the more probable alternative. These proba-
bilities are calculated on the assumption of feature independence. The considered
features comprise structural features (the distance between the entities, whether
one of the entities was referred to in the first sentence of an article) and content
features (e.g. whether entities with similar names—probable coreferences—or
with similar descriptors are related in other contexts).

The results of the SIFT system were close to those of the best (hand-written)
systems in MUC-7.

5.2 Hidden Markov Models

Active Hidden Markov Models: The algorithm developed by Scheffer et al. [48, 49]
learns Hidden Markov Models (HMMs) from sparsely (partially) labeled texts.
Their HMM algorithm tags each token (word) in a document with one of a set of
predefined tags, or the special tag none—the tags (to find) are the hidden states
of the Markov Model, while the observed tokens are the visible output of the
model. The state (tag) sequence minimizing the per-token error is found using
the forward-backward algorithm. Thus the observation sequence John Smith,
extension 7343 should correspond to the state sequence (firstname, name, none,
phone). Attributes of each token store the output of preprocessing tools—e.g.
the POS tag, word stem, or the surrounding HTML element.

For training the model, partially labeled documents where some of the tags
are unspecified are sufficient. The remaining unknown tags are estimated using

196 C. Siefkes and P. Siniakov

the Baum-Welch algorithm. Active learning is used to select the most “difficult”
untagged tokens for hand-tagging by the user. The tokens with the lowest dif-
ference between the probabilities of the two most probable states are considered
most difficult.

HMMs Learned by Stochastic Optimization: The state-transition structure of
HMMs is often chosen manually. Freitag and McCallum [24] employ stochastic
optimization for this purpose. The algorithm performs hill-climbing starting from
a simple model and splitting states until a (locally) optimal state-transition
structure has been found. The performance of each model is evaluated on a
validation set.

The approach employs a separate HMM for each slot type (e.g. seminar
speaker) in a document. Each model contains two types of states, target states
that produce the tokens to extract and non-target states.

The Baum-Welch algorithm is used to estimate transition and emission prob-
abilities of each tested model. To increase the reliability of estimated emission
probabilities, the technique of shrinkage [23] is used. Parameter estimates from
sparse states in a complex model are “shrinked” towards estimates from related
states in a simpler model where more training data is available for each state (be-
cause the number of states is lower). All target states are considered as related,
as are all non-target states.

A weighted average learned through Estimation-Maximization is used to com-
bine the estimates of different models. The smoothed, shrinkage-based probabil-
ity of state s emitting word w is λ1P (w|s) + λ2P (w|a(s)) + λ3P (1

K), where the
last term represents the uniform distribution, a(s) is the parent state of s (a state
combining all target states if s is a target state, a state combining all non-target
states otherwise), and λ1 + λ2 + λ3 = 1.

For learning a suitable HMM structure, non-target states are further differ-
entiated as either prefix or suffix (preceding resp. following a target phrase) or
background states (anything else). The most simple HMM fitting this structure
has four states (one of each kind) and considers exactly one prefix + suffix around
each target state.1

This model is used as the starting point for hill climbing. Related models
are generated by lengthening a prefix, suffix, or target string (adding a new
state of the same kind that must be traversed before the model can proceed
to the next kind of state), by splitting a prefix/suffix/target string (creating a
duplicate where the first and last states of the duplicated prefix/suffix/target
have the same connectivity as in the original), or adding a background state.
Model variations are evaluated on a hold-out set or via 3-fold cross-validation.

Hierarchical Hidden Markov Models: Skounakis et al. [51] use hierarchical HMMs
(HHMMs) [17] for IE. HHMMs combine several levels of states to describe a

1 The background state is connected to itself and to the prefix state which is in turn
connected to the target state, the target state is connected to itself and to the suffix
state which is connected to the background state.

An Overview and Classification of Adaptive Approaches to IE 197

sequence at different granularity levels. A two-level HHMM is used—the top
level models phrase segments (noun, verb, and prepositional phrases) provided
by a shallow parser, the lower level models individual words (including their POS
tags) within a phrase.

The Viterbi, Forward, and Backward algorithms are adapted to ensure that
the embedded word model reaches the end state exactly at the end of a each
phrase and to ensure the typing of the phrase model (each state has a type that
corresponds to the type of the phrase segment it emits).

Context hierarchical HMMs (CHHMMs) are an extended variant that incor-
porate additional sentence structure information in each phrase. The word model
is extended to consider the left and right neighbor of each word, generating a
sequence of overlapping trigrams. To reduce the number of possible observa-
tions, individual features (words and tags) are combined under the assumption
of conditional independence.

Evaluation shows superior results for hierarchical models, especially CHH-
MMs, compared with flat HMMs.

Generally, HMMs offer a simple yet powerful way to model text that has
proved very successful in various areas of language processing. However, the
generative nature of HMMs makes it hard to capture multiple interdependent
sources of information. The approaches described in the following section address
this problem by switching to sequential models that are conditional instead of
generative.

5.3 Maximum Entropy Markov Models and Conditional Random
Fields

The Maximum Entropy Markov Models (MEMMs) used by [33] are a condi-
tional alternative to HMMs. MEMMs calculate the conditional probability of a
state (tag) given an observation (token) and the previous state (tag). Thus the
two parts of an HMM—calculating the probability of a state depending on the
previous one (transition function) and calculating the probability of an observa-
tion depending on the current state (observation function)—are collapsed into a
single function.

Observations can comprise many features which need not be independent.
Features are binary, e.g. the word “apple”, a lower-case word etc. The actually
used features are selected and weighted by maximum entropy (ME) modeling.
Generalized Iterative Scaling (GIS) is used to train the parameters of the model.
The most probable tagging sequence is found using a variation of Viterbi search
adjusted for MEMMs.

A variation of the Baum-Welch algorithm can be used to estimate missing
tags (states) during training, so the model can be trained from partially labeled
or even unlabeled documents. No experimental results of doing this are reported
though.

A disadvantage of associating observations with state transitions instead of
states is the high number of parameters: |S|2×|O| instead of the |S|2+|S|×|O| of

198 C. Siefkes and P. Siniakov

classical HMMs (|S| is the number of states, |O| of observations). This increases
the risk of data sparseness.

Tested on a text segmentation task, MEMM performs significantly better
than both classical HMMs and a stateless maximum entropy model.

A weakness of MEMMs is the label bias problem: the probability mass ar-
riving at a state must be distributed among the successor states, thus outgo-
ing transitions from a state compete only against each other, not against other
transitions. This results in a bias in favor of states with fewer outgoing tran-
sitions. Conditional Random Fields (CRFs) [28, 34] address this problem by
modeling the joint probability of an entire sequence of labels in a single expo-
nential model instead of modeling the conditional probabilities of next states in
per-state exponential models.

CRFs are undirected graphical models (a.k.a. random fields or Markov net-
works) that calculate the conditional of values on designated output variables
depending on other designated input variables.

P (y|x) =
1

Zx

∏
c∈C

Φc(xc, yc)

is the conditional probability of output values y given input values x. Zx =∑
y′

∏
c∈C Φc(xc, yc) is the normalizer (partition function), C is the set of all

cliques, Φc(·) is the potential function for clique c, xc and yc are the sub-sets of
the variables in x resp. y that participate in clique c.

CRFs have been employed for preprocessing tasks such as part-of-speech
(POS) tagging [28] and for IE subtasks such as coreference resolution [32].

5.4 Token Classification

There are multiple approaches that employ standard classification algorithms,
modeling information extraction as a token classification task. These systems
split a text into a series of tokens and invoke a trainable classifier to decide for
each token whether or not it is part of an slot filler of a certain type (e.g. speaker
or location of a seminar).

Combination Strategies: To re-assemble the classified tokens into multi-token
slot fillers, various combination strategies (or tagging strategies) can be used. The
trivial (Triv) strategy would be to use a single class for each slot type and an
additional “O” class for all other tokens. However, this causes problems if two
entities of the same type immediately follow each other, e.g. if the names of two
speakers are separated by a linebreak only. In such a case, both names would be
collapsed into a single entity, since the trivial strategy lacks a way to mark the
begin of the second entity.

For this reason (as well as for improved classification accuracy), various more
complex strategies are employed that use distinct classes to mark the first and/or
last token of an slot filler. The two variations of IOB tagging are probably most
common: the variant usually called IOB2 classifies each token as the begin of a
slot filler of a certain type (B-type), as a continuation of the previously started

An Overview and Classification of Adaptive Approaches to IE 199

slot filler, if any (I-type), or as not belonging to any slot filler (O). The IOB1
strategy differs from IOB2 in using B-type only when necessary to avoid am-
biguity (i.e. if two same-type entities immediately follow each other); otherwise
I-type is used even at the beginning of slot fillers. While the Triv strategy uses
only n + 1 classes for n slot types, IOB tagging requires 2n + 1 classes.

BIE tagging differs from IOB in using an additional class for the last token
of each slot filler. One class is used for the first token of a slot filler (B-type),
one for inner tokens (I-type) and another one for the last token (E-type). There
are two variations that differ in the handling of slot fillers consisting in a single
token (which is thus both begin and end): BIE1 simply assigns the begin class
(B-type), while BIE2 uses a fourth class BE-type to mark them specially.2 Thus
3n + 1 classes are used by BIE1, 4n + 1 by BIE2.

The strategies discussed so far require only a single classification decision
for each token (through often multiple binary classifiers are used concurrently
instead of a single multi-class classifier). Another option is to use two separate
classifiers, one for finding the begin and another one for finding the end of slot
fillers. Begin/End tagging requires n + 1 classes for each of the two classifiers
(B-type + O for the first, E-type + O for the second). In this case, there is
no distinction between inner and outer (other) tokens. Complete slot fillers are
found by combining the most suitable begin/end pairs of the same type, e.g. by
taking the length distribution of slots into account.

Classification Algorithms: There are various approaches that employ a classi-
fication algorithm with one of the combination strategies described above: [8] uses
Maximum Entropy (MaxEnt) modeling with BIE2 tagging; [59] uses Memory-
based Learning (MBL) with the IOB1 strategy; the TIE system [50] pairs the
Winnow algorithm [31] with IOB2. Since Winnow is an online algorithm that
can learn from a single pass over the training data, TIE support incremental
learning, i.e. the extraction model can be updated on-the-fly without requiring a
full retraining. However, better results are reported for batch training (multiple
passes over the training data).

ELIE [18, 19] uses two Support Vector Machines (SVM) for Begin/End tag-
ging. Highly improved results are reached by augmenting this setup with a second
level (L2) of begin/end classifiers. The L2 end classifier focuses on finding suit-
able end tags for matching left-over begin tags from the level-1 begin classifier
(and vice versa). While the L1 classifiers are trained on a very high number of
tokens, almost all of which are negative instances (O), the L2 classifiers only
consider the near context of left-over L1 begin/end tags which allows a more fo-
cused classification. In this way, the recall of the system can be increased without
seriously affecting the precision.

While token-classifying approaches lack the genuinely sequential nature of
HMMs and conditional models, they have proved very successful (cf. Sec. 6.5),

2 Note that the actual names used to identify classes do not matter and can deviate
from those used in the explanation; what matters is the chosen partitioning of tokens
into classes.

200 C. Siefkes and P. Siniakov

due to their ability to combine rich feature representations of the tokens to
classify with powerful classification algorithms.

5.5 Fragment Classification and Bayesian Networks

SNoW-IE: Roth and Yih [46] employ the Winnow -based SNoW classifier in
a two-stage architecture. Among a small number of possible candidate frag-
ments identified in the filtering stage, the (presumably) correct text fragment
is determined and extracted in the classifying stage. The two-stage architecture
allows using a rich feature representation in a second step for the small subset
of promising candidates which would be infeasible (or very inefficient) to use for
all possible fragments.

Rich context representations are created by encoding certain relational struc-
tures in propositional representations. In the first phase, only single word tokens
and POS tags and collocations of two adjoint words/tags (bigrams) are used
as features. For words and tags in the left and right context window, the rel-
ative position is encoded in the feature. In second phase, “sparse collocations”
of words/tags from left and right window and target phrase are also consid-
ered. A sparse collocation of n elements generates an n-gram feature for each
subsequence of elements vi . . . vj , 1 ≤ i < j ≤ n.

In the version presented in [46], a different classifier is trained for each entity
type in each phrase—dependencies between different types are not considered.
When several classifiers choose identical fragments for extraction, the more con-
fident classifier (higher activation value) wins.

But relations between entities can yield important hints for determining the
exact entity type. Thus the approach has been modified to recognize entities and
relations between them at the same time [47]. Borders of entities and existence of
relations must be given, but their types are established in a joint step, by maxi-
mizing the joint likelihood of all type assignments in a belief network (Bayesian
network), based on original estimates given by SNoW classifiers.

The mathematical model does not allow loops—different relations are as-
sumed to be independent and entity types are assumed to be independent of
relationship types. Another limitation of this approach is that entity borders
must be known in advance and cannot be changed.

BIEN: BIEN (Bayesian Information Extraction Network) [41] is another ap-
proach utilizing Bayesian networks. For preprocessing, words are lemmatized
(stemmed) and POS tagged and sentences are split into flat syntactic chunks
(noun, verb, prepositional, and other phrases). Additional features are provided
by capitalization, word length, and several gazetteers (location identifiers, pop-
ular names).

Dynamic Bayesian networks (DBNs) represent previous decisions to model
the order of events (“flow of time”), generalizing Hidden Markov Models. The
BIEN system is based on a DBNS that classifies each token as belonging to one of
the target field types or to the background (hidden variable Tag). Another hidden
variable (Last Target) stores the last recognized target field type, reflecting the

An Overview and Classification of Adaptive Approaches to IE 201

order in which target information is expressed. The Viterbi algorithm is used for
classification (determining the most likely sequence of Tag variables); the EM
algorithm is used for training the model.

6 Comparison of Selected Approaches

In this section we compare the approaches according to the types of tasks and
texts they can handle as well as the types of features they consider. We also
compare tagging requirements and learning characteristics. The final subsection
discusses quantitative evaluation and presents evaluation results on two standard
corpora. Table 1 in Sec. 1.3 can be consulted to locate the detailed descriptions
of approaches and systems.

6.1 Types of Tasks Handled

The main IE task is to fill a template that contains several slots, which is typically
done in two steps:

– Slot filling or single-slot extraction to find suitable fillers for the defined slots.
– Template unification or multi-slot extraction to combine the found slot fillers

into templates, resolving coreferences as required.

Most approaches described in this paper handle the first step only. Hence
they are limited to corpora where each document contains a single template;
otherwise additional pre- or postprocessing is necessary to split the input at
template boundaries or to arrange the found slot fillers into adequate tem-
plates.

Some systems—Crystal3, Whisk and TIMES—handle multi-slot extraction
at the sentence level. Thus no special processing is necessary if each template is
expressed within a single sentence in a input text. This might be sufficient for
some domains but it is not a general solution to the template unification task.

Other approaches go further by unifying templates at a logical level, beyond
sentence borders: the Amilcare extension of (LP)2, IE2, SIFT, and the extended
version of SNoW-IE.

A significant difference can be observed in the requirements on target struc-
tures: the approaches presented in sections 3.1 and 4.1 generate templates dy-
namically; all other approaches require a predefined target structure. The dy-
namic construction of target structures reduces the human effort necessary to
adapt a new domain; however, in many cases, automatically deduced structures
will be less appropriate than hand-modeled ones.

6.2 Types of Texts Handled

Three types of texts are often distinguished (cf. [54, Sec. 1], [14, Sec. 2.5]):
3 Crystal does not identify exact slot fillers but only sentence constituents containing

slot fillers, thus it always requires postprocessing.

202 C. Siefkes and P. Siniakov

– Free texts are grammatical natural-language texts, e.g. newspaper articles or
scientific papers.

– Semi-structured texts are not fully grammatical and sometimes telegraphic
in style, e.g. newsgroups or email messages or classified ads.

– Structured texts contain textual information strictly following a predefined
(but not necessarily known) format where items are arranged in a fixed
order and separated by delimiter characters or strings. Examples are comma-
separated values or web pages generated from a database.

Even though some systems are designed for certain types of texts, it cannot be
assumed that some class of IE approaches is particularly suitable for a particular
kind of text. Furthermore, all classes have in common that the performance on
structured texts is better than on free texts.

Some approaches—TANKA/MaLTe, the original version of Crystal4, IE2,
TIMES and SIFT—rely heavily on linguistic information and are thus suitable
for free texts only. The system described by Embley et al. [15] is restricted
to structured texts. Most other approaches are suitable for both free and semi-
structured texts—they make use of linguistic information as far as it is available,
but do not necessarily require it.

Most other systems make little or no use of linguistic knowledge, thus they
are suited for semi-structured and structured texts. Whisk, SRV and BWI claim
to be targeted at any text type, from free text to structured text. Approaches
that allow variable input will play a major role in the future research, since in
real world domains an IE system will be confronted with the large diversity of
texts.

6.3 Considered Features

There is a wide variety in the types of features that are considered for learning
by different approaches. All systems utilize the words (tokens) in a text as the
main lexical features. Not only the presence or absence of a word but also the
word order play an important role. Morphological information is used not quite
as universally, but very frequently. Especially POS (part-of-speech) tags are used
by a wide variety of systems. Some systems also utilize a stemmer or lemmatizer
to determine the base forms of words.5

For linguistic information beyond the word level, several approaches6 rely
on simple chunkers that identify various types of clauses (noun, verb, preposi-
tional clauses etc.) in a sentence. More refined chunk parsers that also assign
grammatical roles for chunks (subject, direct or indirect object) are employed
by the systems presented in Sec. 3.1 and by Crystal and Whisk (for free texts).
Only two systems, SRV and TANKA/MaLTe, make use of a deep parser. Rule
and knowledge-based systems tend to embed more syntactic information since

4 [53] describes an extension to semi-structured text.
5 (LP)2, TIE and BIEN, optional for Active HMMs.
6 Such as TIMES, (C)HHMMs, TIE, BIEN, and the extended version of BWI.

An Overview and Classification of Adaptive Approaches to IE 203

syntax is often used for rule construction. Statistical systems consider predom-
inantly linguistic information related to single tokens due to their token-based
processing of the text.

Semantic information is used less frequently than syntactic. Typically, it com-
prises simple gazetteers or word lists assigning semantic classes to words.7 Some
approaches8 use a complete thesaurus, WordNet [16]. Knowledge-based systems
use their own built-in knowledge-bases.

Some approaches9 consider features derived from the shape of words/tokens,
e.g. token type (lower-case, capitalized, all-caps, digits, etc.) or prefixes and
suffixes. Most approaches work on plain text input without formatting, but a few
can utilize structural information from HTML or XML documents: Stalker and
BWI can handle HTML tags (treating them as normal tokens), Active HMMs
optionally consider the HTML context of text tokens, TIE creates structured
context representations based on the DOM tree of XML documents.

While usually the handled types of features are fixed in advance, the Amilcare
system chooses an adaptive way to consider linguistic information (“LazyNLP”):
the amount of linguistic information available for learning rules is gradually
increased until the effectiveness of the generated rules stops improving.

The three main classes of IE approaches differ significantly in the amount
of used features. Knowledge-based approaches utilize comparably few features
restricting them on semantic and syntactic information. Some statistical systems
try to exploit all available information about text elements generating relatively
big amount of features. Rule-based systems tend to rely heavily on linguistic
features for rule generation.

6.4 Tagging Requirements and Learning Characteristics

Most approaches require training texts to be fully tagged, i.e. all items to extract
must be marked (either embedded within the texts or in external documents).
Full tagging of a large number of documents is a serious burden. Some systems
alleviate this requirement by using active learning on partially tagged texts (the
extended version of Rapier, Whisk, Stalker in Co-Testing setting, Active HMMs).
TIE is the only system that allows incremental learning, i.e. the extraction model
can be updated on-the-fly without requiring a full retraining. The approaches
described in Sections 3.1, 3.4 and 4 utilize human review and interaction instead
of postulating pretagged texts.

The general trend should go towards relaxing the input requirements on the
training texts by incorporating better learning models. Statistical systems par-
tially succeed in processing not fully consistent text corpora, while rule-based
and knowledge-based systems rely on traditional elaborately prepared text re-
sources.
7 Used by Riloff’s system, Crystal, (LP)2, TIMES, TIE, and BIEN for various word

classes.
8 Rapier, SRV, TIMES.
9 SRV, BWI, MEMM, TIE.

204 C. Siefkes and P. Siniakov

6.5 Quantitative Comparison

Evaluation Metrics: The most commonly used metrics for quantitative evalu-
ation of IE systems are precision and recall ; the joint F-measure combines them
both in a single figure. For each slot type, results are evaluated by counting
true positives tp (correct slot filters), false positives fp (spurious slot filters),
false negatives fn (missing slot filters) and calculating precision P = tp

tp+fp and

recall R = tp
tp+fn . The F-measure is the harmonic mean of precision and recall:

F =
2 × P × R

P + R
.

For a corpus containing multiple slot types, there are several ways to combine
results of all types into a single measure. The microaverage is calculated by
summing the respective tp, fp and fn counts for all types and then calculating
P , R, and F over the summed counts. Thus slot types that occur more frequently
have a higher impact on the joint measure than rare types. On the other hand,
the macroaverage is calculated by computing the mean of all type-specific P and
R values, so all types are considered of equal importance, no matter how often
they occur.

A disadvantage of the microaverage is that is depends on knowing the raw
counts, which are hardly ever published in research papers. This is addressed
by a related metric, the weighted average proposed by [8]: here each slot type
is weighted by the total number of slot fillers of this type in the corpus. These
numbers can be determined by inspecting a corpus, allowing comparisons with
other systems evaluated on the same corpus even if no raw counts have been
published.

Evaluation Methodology: As discussed in [29, 30], there are several issues
that need to be addressed to allow a fair comparison of different systems, some
of which have often been neglected in previous IE evaluations. An important
issue is the size of the split between training and testing set (e.g. 50/50 or 80/20
split) and the procedure used to determine partitions (n-fold cross-validation or
n random splits).

Another issue is how to compare predicted answers (slot fillers) with the
expected (true) answers. Typical options are to require that all occurrences of a
slot in a document should be found (“one answer per occurrence”) or to expect
only a single answer per slot which is considered most likely to be correct (“one
answer per slot”). The latter option is useful if multiple answers for the same slot
are expected to be synonymous (e.g. “2pm” and “2:00 pm”), the former if each
occurrence is assumed to contain relevant new information. A less frequently used
option would be “one answer per different string” where multiple occurrences of
the same string are collapsed into a single occurrence, i.e. different positions in
the document are ignored.

An Overview and Classification of Adaptive Approaches to IE 205

Table 2. F-Measure Results on the Seminar Announcements Corpus

Approach Slots BWI ELIE/L2 HMM (LP)2 MaxEnt MBL SNoW-IE TIE
Reference [22] [18] [23] [9] [8] [59] [46] [50]

etime 228 93.9 96.4 59.5 95.5 94.2 96 96.3 97.5
location 464 76.7 86.5 83.9 75.0 82.6 87 75.2 80.6
speaker 409 67.7 88.5 71.1 77.6 72.6 71 73.8 85.2
stime 485 99.6 98.5 99.1 99.0 99.6 95 99.6 99.3

Weighted Avg 83.9 92.1 81.7 86.0 86.9 86.6 85.3 89.9
Macroaverage 84.5 92.5 78.4 86.8 87.3 87.3 86.2 90.7

Seminar Announcements Corpus: While there is no universal standard cor-
pus that has been used to evaluate all (or most) IE approaches, several reference
corpora have been used quite frequently.

The most frequently used IE corpus is probably the CMU Seminar Announce-
ments10 (SemAnn) corpus. The corpus contains 485 seminar announcements
(plain text files) collected from university newsgroups; the task is to extract up
to four slots from each document (if present): speaker, location, start time (stime)
and end time (etime) of the talk.

Generally, training and test sets of equal size are used (50/50 split) and
results are averaged over five or sometimes ten random splits. There are no
predefined random splits for this corpus, so each system uses their own. The
page model published with the corpus prescribes that the “one answer per slot”
method should be used. Table 2 lists the best known results published on this
corpus.11 The last two rows contain the weighted average (based on the number
of existing slot fillers given in column 2) and the macroaverage.

It is noteworthy that the systems reaching best results on this corpus (ELIE
and TIE) are statistical classification-based systems (cf. Sec. 5.4). There are only
two rule-learning systems, BWI and (LP)2, among the eight best systems, and
their performance is inferior to that of the best statistical systems.

Job Postings Corpus: Another frequently used corpus is the Job Postings
collection of Mary E. Califf [3]. The corpus consists of 300 job offers posted to a
Usenet newsgroup. The tasks defines 17 slots of information to extract about job
offers (job title, company, recruiter, salary etc.) and postings (message id, post
date). Sadly, evaluation methodologies used on this corpus vary wildly. Some
authors use 10-fold cross-validation while others use a 50/50 training/test split
averaged over 10 random splits. Another ([54]) uses only a subset of 100 randomly
selected documents for his tests, while others ([12]) use an extended corpus that
contains 600 documents. The original description of the corpus seems to suggest
that “one answer per occurrence” is expected but is not quite clear about this.
10 Accessible from [45], a corrected version with some minor annotation errors fixed is

available at http://nlp.shef.ac.uk/dot.kom/resources.html.
11 One other statistical approach, BIEN [41], is not directly comparable, since it uses

an 80/20 split instead of 50/50. BIEN reaches an weighted average F-measure of
88.9%.

http://nlp.shef.ac.uk/dot.kom/resources.html

206 C. Siefkes and P. Siniakov

Table 3. F-Measure Results on the Job Postings Corpus

Approach Slots ELIE/L2 RAPIER (LP)2 DeSitter SNoW-IE

id 301 99.7 97.5 100.0 97 99.7
title 252 55.8 40.5 43.9 36 52.7
company 91 79.5 70.0 71.9 57 75.4
salary 107 66.3 67.4 62.8 62 72.9
recruiter 167 82.0 68.4 80.6 53 85.3
state 235 92.7 90.2 84.7 86 91.7
city 269 95.1 90.4 93.0 89 89.0
country 138 95.8 93.2 81.0 95 95.5
language 516 91.4 80.6 91.0 26 82.5
platform 469 79.8 72.5 80.5 32 74.1
application 367 69.7 69.3 78.4 30 60.9
area 658 48.7 42.4 66.9 16 51.6
req-years-exp 154 80.0 67.1 68.8 62 83.9
des-years-exp 44 82.9 87.5 60.4 41 79.0
req-degree 82 79.0 81.5 84.7 35 83.5
des-degree 21 55.2 72.2 65.1 35 60.9
post date 298 97.5 99.5 99.5 91 99.2

Weighted Avg 78.6 72.9 79.8 49.9 76.4
Macroaverage 79.5 75.9 77.2 55.5 78.7

An overview of results reached on this corpus is given in Table 3 (based on
[30] and [18]). However, due to the inconsistent evaluation methodologies and
testing sets, they must be treated with caution. The statistical ELIE system
and the rule-learning (LP)2 seem to be very close to each other. However, it is
likely that (LP)2 was set up to evaluate only “one answer per slot” instead of
the “one answer per occurrence” setup used by ELIE. This would explain the
apparently better performance on fields such as platform, application, and area,
which occur multiple times in many documents. Other fields such as message id
and post date are highly regular (part of the message metadata), which explains
the superior results of the rule-based system.

Other Corpora: There are various other corpora, many of which can be found
in the RISE Repository [45]. The most popular of these is probably the Corporate
Acquisitions corpus, another corpus which comes from the same source as the
Seminar Announcements corpus, the PhD thesis of Dayne Freitag [20]. It contains
600 annotated articles about mergers and acquisitions from the Reuters-21578
corpus. The task is to extract the full and abbreviated names of the parties to an
acquisition, the location of the acquired company, the price paid and information
about the status of negotiations. Another important corpus is a collection of
Apartment Rentals created by Stephen Soderland [54]. However, none of these
corpora has been used for evaluation of as many trainable systems as those
detailed above.

An Overview and Classification of Adaptive Approaches to IE 207

7 Conclusion

Focus of adaptive methods is quite diverse and reaches from accomplishing sub-
tasks of IE to complete IE systems. Adaptive approaches to information extrac-
tion comprise methods that apply experience acquired in training or knowledge
gained from external resources (such as thesaurus or user) to establish some kind
of a domain model that is capable of locating relevant contents in domain texts
and matching them to the target structure of the domain. The structure of the
model determines to a large degree the features of an approach and is therefore
the main criterion for its classification. Rule-based approaches learn the model
as a set of pattern-driven extracting rules, statistical approaches build formal
mathematical representations, while knowledge-based approaches establish ex-
plicit logical models.

The principle of adaptive approaches originates from the endeavor to reduce
the amount of hand-coded domain knowledge. However, the approaches still re-
quire human contribution in various forms depending on their class. Human
knowledge is utilized as explicit knowledge sources (gazetteers, ontologies etc.),
examples specifying what to extract by identifying relevant content in train-
ing text or in form of human supervision interacting directly with the system
during correction of the extraction proposals. While statistical and rule-based
approaches rely on the latter, knowledge-based approaches focus mainly (but not
exclusively) on the former. Arguably, the annotation of texts is often less costly
than the explicit formalization of knowledge, which makes statistical or rule-
based approaches more attractive for adaptation to domains where no explicit
knowledge sources are available. On the other hand, knowledge-based approaches
allow easier re-use of existing formalizations.

Rule learning approaches try to exploit the regularity in expressions of cer-
tain information to find common linguistic patterns that match these expressions.
The majority of approaches use rule learning techniques to acquire the patterns.
During the learning process the existing incomplete, erroneous or insufficiently
general patterns are improved using the feedback of a human supervisor or anno-
tations of the training corpus. The interconnection between the learned patterns
and the action transferring the relevant content in the target structure explicitly
or implicitly constitutes the learned rule. A frequently found limitation is the
rudimentary learning mechanisms that do not provide enough generalization ca-
pabilities. Often the shortcomings and weak results are camouflaged by restrict-
ing the complexity of the target structure. Developing more profound models will
be an important research direction for rule learning methods. Another serious
drawback of the actual extraction is that it typically happens within sentence
boundaries or within the scope of predefined instances.

Statistical approaches basically reduce the IE task to the prediction problem.
In the simple case every text token is classified as some attribute of the target
structure or not relevant. Thereby they utilize training data very effectively being
able to learn the correct prediction even from quite limited numbers of examples.
Knowledge-based approaches are much stronger supported by external resources
and consider additionally grammatical parse trees and lookup of semantic classes,

208 C. Siefkes and P. Siniakov

either flat (dictionaries, gazetteers, entity recognizers) or arranged in hierarchies
(thesauri, ontologies).

Due to their heavy reliance on linguistic information, knowledge-based ap-
proaches are suitable for grammatical texts (“free texts”) only, while most sta-
tistical approaches can also handle “semi-structured texts” that are not fully
grammatical and sometimes telegraphic in style, e.g. newsgroups or email mes-
sages or classified ads. Therefore they are more robust with respect to textual
irregularities such as typographical errors or ungrammatical text. Statistical ap-
proaches typically process a single word at a time and combine the results, while
knowledge-based approaches focus on whole sentences. A common trend of both
types of approaches is that early systems (TANKA/MaLTe, SIFT) tend to be
more ambitious, while later development narrows down on more pragmatic and
realizable goals.

Even though remarkable progress has been achieved in the field of IE in recent
time, especially making the systems more autonomous and universally applica-
ble, many problems remain hardly or not yet tackled. The majority of approaches
is not able to recognize and extract multiple occurrences of complex facts. The
systems either cannot handle complex facts at all assuming the target structure
to be a flat slot sequence or it is presupposed that every document contains at
most one instance of the same complex fact. The major difficulty arises when
fragments of information belonging together are scattered in different sometimes
distant parts of a text and it has to be determined whether and which fragment
belongs to what complex entity. Even the most advanced approaches can hardly
handle unification of partial facts beyond the sentence boundaries. The research
challenge will be to find a way of reassembling composite information without
establishing a complete logical representation of the text content.

A similar problem with very different background occurs when the same
instance of a fact repeatedly appears in different forms. Due to the richness of
natural language we can refer to an entity in very many ways. However, only
one occurrence containing the most complete information should be extracted.
Current systems often do not recognize that text fragments refer to the same fact
and extract them as a new found instance. The most straightforward solution not
yet practiced would be to embed the mechanisms of coreference resolution in the
extraction algorithm and develop strategies for selecting the most appropriate
occurrence.

Information extraction suffers from uncertainty of the natural language. Of-
ten facts are expressed with a certain degree of tentativeness (e.g. indirect speech:
“someone reported that. . . ”, “s.o. assumed that. . . ”). In such cases even for hu-
mans it is difficult to decide whether the information is factual and hence rele-
vant. An important task will be to determine the degree of reliability of infor-
mation, which is possible deploying fuzzy methods.

Probably the hardest problem of IE is to identify implicitly expressed in-
formation. However, implicitness of information can be of different origin too.
Saying “The furious battle between pirates and government troops ended in the
crack of dawn as the pirates raised the white flag” we have to consult our world

An Overview and Classification of Adaptive Approaches to IE 209

knowledge and retrieve the fact that white flag is a symbol for a defeat to con-
clude, who won the battle. Consider, on the other hand, “She lived in Berlin.
James was born in the small homonymous town in Texas” where it is sufficient
to know the semantics of the word “homonymous” to infer James’ place of birth.
Surprisingly, some rule-based and statistical systems even now in simple cases
can capture the implicit semantics in linguistic patterns resp. statistical context
models as if it were an explicitly expressed fact. Two prerequisites must be ful-
filled: the fact has to occur somewhere in the text explicitly (comp. “Berlin” in
the last example) and there must be sufficiently many examples for this kind
of implicit reference. More general solutions, however, would require different
approaches which so far are not in sight.

In this context a very important and interesting question is whether the
more profound embedding of semantic analysis will contribute to the advance in
IE. Recent successes in single-slot information extraction reached by statistical
systems that almost completely forgo semantic resources and analysis suggest
that it may be dispensable. But does the good performance for the simplest of
IE tasks open optimistic perspectives for much more difficult tasks or have the
statistical approaches already reached their limit? One development perspective
consists in the combination of statistical extraction systems with algorithms
for normalization, coreference resolution and instance unification that rely more
heavily on external knowledge bases or rules.

Future research will have to face these problems and questions to extend the
practical usefulness of IE systems to a broader range of applications.

References

[1] C. Aone, L. Halverson, T. Hampton, and M. Ramos-Santacruz. SRA: Descrip-
tion of the IE2 system used for MUC. In Proceedings of the Seventh Message
Understanding Conference (MUC-7), 1998.

[2] A. Bagga and J. Y. Chai. A trainable message understanding system. In CoNLL,
pages 1–8. 1997.

[3] M. E. Califf. Relational Learning Techniques for Natural Language Extraction.
PhD thesis, University of Texas at Austin, 1998.

[4] M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for in-
formation extraction. In Working Notes of AAAI Spring Symposium on Applying
Machine Learning to Discourse Processing, pages 6–11, Menlo Park, CA, 1998.

[5] M. E. Califf and R. J. Mooney. Bottom-up relational learning of pattern matching
rules for information extraction. Journal of Machine Learning Research, 4:177–
210, 2003.

[6] C. Cardie. A case-based approach to knowledge acquisition for domain-specific
sentence analysis. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 798–803. AAAI Press, 1993.

[7] J. Y. Chai and A. W. Biermann. The use of word sense disambiguation in an
information extraction system. In AAAI/IAAI, 1999.

[8] H. L. Chieu and H. T. Ng. A maximum entropy approach to information extraction
from semi-structured and free text. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI 2002), pages 786–791, 2002.

210 C. Siefkes and P. Siniakov

[9] F. Ciravegna. (LP)2, an adaptive algorithm for information extraction from Web-
related texts. In Proceedings of the IJCAI-2001 Workshop on Adaptive Text Ex-
traction and Mining, Seattle, USA, 2001.

[10] F. Ciravegna and A. Lavelli. LearningPinocchio: Adaptive information extraction
for real world applications. In Proceedings of the 2nd Workshop on Robust Methods
in Analysis of Natural Language Data (ROMAND 2002), Frascati, Italy, 2002.

[11] R. Collier. Automatic template creation for information extraction, an overview.
Technical report, University of Sheffield, 1996.

[12] A. De Sitter and W. Daelemans. Information extraction via double classification.
In Proceedings of the International Workshop on Adaptive Text Extraction and
Mining (ATEM-2003), 2003.

[13] S. Delisle, K. Barker, J.-F. Delannoy, S. Matwin, and S. Szpakowicz. From text
to Horn clauses: Combining linguistic analysis and machine learning. In 10th
Canadian AI Conf., 1994.

[14] L. Eikvil. Information extraction from World Wide Web – A survey. Technical
Report 945, Norwegian Computing Center, 1999.

[15] D. W. Embley, D. M. Campbell, R. D. Smith, and S. W. Liddl. Ontology-based
extraction and structuring of information from data-rich unstructured documents.
In Conference on Information and Knowledge Management (CIKM), pages 52–59,
1998.

[16] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge, MA, 1998.

[17] S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden Markov model: Analysis
and applications. Machine Learning, 32(1):41–62, 1998.

[18] A. Finn and N. Kushmerick. Information extraction by convergent boundary
classification. In AAAI-2004 Workshop on Adaptive Text Extraction and Mining,
San Jose, USA, 2004.

[19] A. Finn and N. Kushmerick. Multi-level boundary classification for information
extraction. In ECML 2004, pages 111–122, 2004.

[20] D. Freitag. Machine Learning for Information Extraction in Informal Domains.
PhD thesis, Carnegie Mellon University, 1998.

[21] D. Freitag. Toward general-purpose learning for information extraction. In
C. Boitet and P. Whitelock, editors, Proc. 36th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 404–408, San Francisco, CA, 1998.

[22] D. Freitag and N. Kushmerick. Boosted wrapper induction. In AAAI/IAAI, pages
577–583, 2000.

[23] D. Freitag and A. K. McCallum. Information extraction with HMMs and shrink-
age. In Proceedings of the AAAI-99 Workshop on Machine Learning for Informa-
tion Extraction, 1999.

[24] D. Freitag and A. K. McCallum. Information extraction with HMM structures
learned by stochastic optimization. In AAAI/IAAI, pages 584–589, 2000.

[25] J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review,
13(1):3–54, 1999.

[26] S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM—semi-automatic creation
of metadata. In A. Gomez-Perez and V. R. Benjamins, editors, Proc. 13th Inter-
national Conference on Knowledge Engineering and Management, 2002.

[27] D. Kauchak, J. Smarr, and C. Elkan. Sources of success for information extraction
methods. Technical Report CS2002-0696, UC San Diego, 2002.

[28] J. Lafferty, A. K. McCallum, and F. Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In ICML, 2001.

An Overview and Classification of Adaptive Approaches to IE 211

[29] A. Lavelli, M. Califf, F. Ciravegna, D. Freitag, C. Giuliano, N. Kushmerick, and
L. Romano. A critical survey of the methodology for IE evaluation. In Proceedings
of the 4th International Conference on Language Resources and Evaluation (LREC
2004), 2004.

[30] A. Lavelli, M.-E. Califf, F. Ciravegna, D. Freitag, C. Giuliano, N. Kushmerick,
and L. Romano. IE evaluation: Criticisms and recommendations. In AAAI-2004
Workshop on Adaptive Text Extraction and Mining, San Jose, USA, 2004.

[31] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285–318, 1988.

[32] A. McCallum and B. Wellner. Object consolidation by graph partitioning with
a conditionally-trained distance metric. In KDD Workshop on Data Cleaning,
Record Linkage, and Object Consolidation, 2003.

[33] A. K. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models
for information extraction and segmentation. In ICML, 2000.

[34] A. K. McCallum and D. Jensen. A note on the unification of information extrac-
tion and data mining using conditional-probability, relational models. In IJCAI’03
Workshop on Learning Statistical Models from Relational Data, 2003.

[35] S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, R. Weischedel,
and the Annotation Group. Algorithms that learn to extract information—BBN:
Description of the SIFT system as used for MUC. In MUC-7, 1998.

[36] S. Miller, H. Fox, L. Ramshaw, and R. Weischedel. A novel use of statistical
parsing to extract information from text. In ANLP-NAACL, pages 226–233, 2000.

[37] I. Muslea, S. Minton, and C. A. Knoblock. Hierarchical wrapper induction for
semistructured information sources. Autonomous Agents and Multi-Agent Sys-
tems, 4(1/2):93–114, 2001.

[38] I. Muslea, S. Minton, and C. A. Knoblock. Active learning with strong and weak
views: A case study on wrapper induction. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI 2003), 2003.

[39] U. Y. Nahm and R. J. Mooney. Using information extraction to aid the discovery of
prediction rules from text. In Proceedings of the Sixth International Conference on
Knowledge Discovery and Data Mining (KDD-2000) Workshop on Text Mining,
Boston, MA, 2000.

[40] C. Nobata and S. Sekine. Towards automatic acquisition of patterns for informa-
tion extraction. In International Conference of Computer Processing of Oriental
Languages, 1999.

[41] L. Peshkin and A. Pfeffer. Bayesian information extraction network. In IJCAI,
2003.

[42] J. R. Quinlan and R. M. Cameron-Jones. Induction of logic programs: FOIL and
related systems. New Generation Computing, 13(3,4):287–312, 1995.

[43] E. Riloff and R. Jones. Learning dictionaries for information extraction by multi-
level bootstrapping. In Proceedings of the Sixteenth National Conference on Ar-
tificial Intelligence, pages 1044–1049. The AAAI Press/MIT Press, 1999.

[44] E. Riloff and M. Schmelzenbach. An empirical approach to conceptual case frame
acquisition. In Proceedings of the Sixth Workshop on Very Large Corpora, 1998.

[45] RISE repository. http://www.isi.edu/info-agents/RISE/.

[46] D. Roth and W.-t. Yih. Relational learning via propositional algorithms: An
information extraction case study. In IJCAI, 2001.

[47] D. Roth and W.-t. Yih. Probabilistic reasoning for entity & relation recognition.
In COLING’02, 2002.

http://www.isi.edu/info-agents/RISE/

212 C. Siefkes and P. Siniakov

[48] T. Scheffer, C. Decomain, and S. Wrobel. Active hidden Markov models for infor-
mation extraction. In Proceedings of the International Symposium on Intelligent
Data Analysis, 2001.

[49] T. Scheffer, S. Wrobel, B. Popov, D. Ognianov, C. Decomain, and S. Hoche.
Learning hidden Markov models for information extraction actively from partially
labeled text. Künstliche Intelligenz, (2), 2002.

[50] C. Siefkes. Incremental information extraction using tree-based context repre-
sentations. In A. Gelbukh, editor, Sixth International Conference on Intelligent
Text Processing and Computational Linguistics (CICLing 2005), Lecture Notes in
Computer Science, pages 510–521. Springer, 2005.

[51] M. Skounakis, M. Craven, and S. Ray. Hierarchical hidden Markov models for
information extraction. In IJCAI, 2003.

[52] S. Soderland. Learning Text Analysis Rules for Domain-specific Natural Language
Processing. PhD thesis, University of Massachusetts, Amherst, 1997.

[53] S. Soderland. Learning to extract text-based information from the World Wide
Web. In Proc. Third International Conference on Knowledge Discovery and Data
Mining (KDD-97), pages 251–254, 1997.

[54] S. Soderland. Learning information extraction rules for semi-structured and free
text. Machine Learning, 34(1–3):233–272, 1999.

[55] S. Soderland. Building a machine learning based text understanding system. In
Proc. IJCAI-2001 Workshop on Adaptive Text Extraction and Mining, 2001.

[56] S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert. CRYSTAL: Inducing a con-
ceptual dictionary. In C. Mellish, editor, Proc. 14th International Joint Conference
on Artificial Intelligence, pages 1314–1319, San Francisco, 1995.

[57] K. Sudo, S. Sekine, and R. Grishman. Automatic pattern acquisition for Japanese
information extraction. In HLT2001, 2001.

[58] C. A. Thompson, M. E. Califf, and R. J. Mooney. Active learning for natural
language parsing and information extraction. In Proc. 16th International Conf.
on Machine Learning, pages 406–414, 1999.

[59] J. Zavrel and W. Daelemans. Feature-rich memory-based classification for shallow
NLP and information extraction. In J. Franke, G. Nakhaeizadeh, and I. Renz,
editors, Text Mining, Theoretical Aspects and Applications, pages 33–54. Springer
Physica, 2003.

	Introduction
	Information Extraction
	Related Areas
	Goals and Evaluation Criteria

	Architecture of a Typical IE System
	Rule-Learning Approaches
	Automatic Pattern and Template Creation
	Covering Algorithms
	Relational Rule Learners
	Case-Based Approaches to IE and Knowledge Acquisition
	Wrapper Induction
	Hybrid Approaches

	Knowledge-Based Approaches
	Translation of Texts into Horn Clauses
	Ontology-Based Extraction
	Thesaurus-Based Extraction

	Statistical Approaches
	Probabilistic Parsing
	Hidden Markov Models
	Maximum Entropy Markov Models and Conditional Random Fields
	Token Classification
	Fragment Classification and Bayesian Networks

	Comparison of Selected Approaches
	Types of Tasks Handled
	Types of Texts Handled
	Considered Features
	Tagging Requirements and Learning Characteristics
	Quantitative Comparison

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

