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Discrete Mathematics for Bioinformatics (P1)
Lecture & Tutorials (4 + 2)

Winter 2009/10, FU Berlin

Prof. Dr. Alexander Bockmayr
bockmayr <AT> mi.fu-berlin dot de

Prof. Dr. Knut Reinert
reinert <AT> mi.fu-berlin dot de

Sandro Andreotti
andreott <AT> mi.fu-berlin dot de

Web page at http://www.inf.fu-berlin.de/

Organizational issues

Lecture and slides will be in English.

Credits. Contributed to the slides have Prof. Alexander Bockmayr, Prof. Knut Reinert, Dr. Gunnar Klau, and Prof.
Daniel Huson (Tübingen)

Please note the following:

• You can download all slides (also in script form) typically the day after the lecture. It is not necessary to
copy the slides.

• However, the slides are not a complete script. Please take notes and maybe copy things on the black-
board.

• Exercises will be held by Sandro Andreotti.

• For all current information please check frequently http://www.inf.fu-berlin.de/
groups/ag-bio.

Lectures

Lectures take place

• Tuesdays from 10-12 am in SR 006 (Takustraße 9)

• Thursdays from 10-12 am in SR 006 (Takustraße 9)

Exercises

The exercises are mandatory and will be counted as active participation in the three column model of the FU
Berlin.

Active participation = presence + reviews + some blackboard action.

There will also be some practical exercices (programming).

Reviews: 2 × 60 min (End November, Mid January)

Exercises (2)
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Exercises will be held once weekly in room SR 032 (A6) (Fridays from 10-12 am).

First meeting: Friday, 24 Oct 2007

Office hours

See websites.

Content

1. Linear Programming

(a) (L1, 13 Oct) Optimization problems (AB)

(b) (L2, 15 Oct) Polyhedra (AB)

(c) (L3, 20 Oct) Simplex Algorithm (AB)

(d) (L4, 22 Oct) Duality & Applications (AB)

2. Combinatorial Optimization I

(a) (L5, 27 Oct) Branch-and-Cut (Intro) (KR)

(b) (L6, 29 Oct) B&C for sequence alignment (Modelling) (KR)

(c) (L7, 3 Nov) B&C for sequence alignment (Algorithms) (KR)

(d) (L8, 5 Nov) B&C for sequence alignment II (KR)

(e) (L9, 10 Nov) B&C for RNA alignment (KR)

(f) (L10, 12 Nov) Lagrangian Relaxation for RNA alignment (KR)

3. Data structures and analysis methods I

(a) (L19, 17 Nov) Hashing (KR)

(b) (L20, 19 Nov) Hashing II (KR)

(c) (L21, 24 Nov) Randomized algorithms: search trees/skiplists (KR)

(d) (L22, 26 Nov) Randomized analysis, Chernoff bounds I (KR)

(e) (L23, 1 Dec) Randomized analysis, Chernoff bounds II (KR)

4. Combinatorial Optimization II

(a) (L11, 3 Dec) Constraint programming I (AB)

(b) (L12, 8 Dec) Constraint programming II (AB)

(c) (L13, 10 Dec) Local search and metaheuristics I (AB)

(d) (L14, 15 Dec) Local search and metaheuristics II (AB)

5. Graph algorithms

(a) (L15, 17 Dec) Shortest path (AB)

(b) (L16, 5 Jan) Network flow I (AB)

(c) (L17, 7 Jan) Network flow II (AB)

(d) (L18, 12 Jan) Matching (AB)

6. Data structures and analysis methods II

(a) (L24, 14 Jan) ≈ Review 2

(b) (L25, 19 Jan) Locality sensitive hashing and applications (KR)
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(c) (L26, 21 Jan) Tree decompositions and applications I (KR)

(d) (L27, 26 Jan) Tree decompositions and applications II (KR)

7. Computability and complexity theory

(a) (L28, 28 Jan) Computability I (AB)

(b) (L29, 2 Feb) Computability II (AB)

(c) (L30, 4 Feb) Complexity theory I (AB)

(d) (L31, 9 Feb) Complexity theory II (AB)

8. (L32, 11 Feb) Written examination

Discrete mathematics

What is discrete mathematics? (discrete, from lat. discernere, to discern, to separate)

From http://mathworld.wolfram.com:

Discrete mathematics is the branch of mathematics dealing with objects that can assume only distinct, sepa-
rated values. The term “discrete mathematics” is therefore used in contrast with “continuous mathematics”,
which is the branch of mathematics dealing with objects that can vary smoothly (and which includes, for
example, calculus). Whereas discrete objects can often be characterized by integers, continuous objects
require real numbers.

The study of how discrete objects combine with one another and the probabilities of various outcomes is
known as combinatorics. Other fields of mathematics that are considered to be part of discrete mathematics
include graph theory and the theory of computation. Topics in number theory such as congruences and
recurrence relations are also considered part of discrete mathematics.

The study of topics in discrete mathematics usually includes the study of algorithms, their implementations,
and efficiencies. Discrete mathematics is the mathematical language of computer science, and as such, its
importance has increased dramatically in recent decades.

Why is it important in bioinformatics?
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Linear programming
Optimization Problems

• General optimization problem

max{z(x) | f j(x)≤ 0,x ∈ D} or min{z(x) | f j(x)≤ 0,x ∈ D}

where D ⊆ Rn, f j : D → R, for j = 1, . . . ,m, z : D → R.

• Linear optimization problem

max{cT x | Ax ≤=≥ b,x ∈ Rn}, with c ∈ Rn,A ∈ Rm×n,b ∈ Rm

• Integer optimization problem: x ∈ Zn

• 0-1 optimization problem: x ∈ {0,1}n

Feasible and optimal solutions

• Consider the optimization problem

max{z(x) | f j(x)≤ 0,x ∈ D, j = 1, . . . ,m}

• A feasible solution is a vector x∗ ∈ D ⊆ Rn such that f j(x∗)≤ 0, for all j = 1, . . . ,m.

• The set of all feasible solutions is called the feasible region.

• An optimal solution is a feasible solution such that

z(x∗) = max{z(x) | f j(x)≤ 0,x ∈ D, j = 1, . . . ,m}.

• Feasible or optimal solutions

– need not exist,

– need not be unique.

Transformations

• min{z(x) | x ∈ S}= max{−z(x) | x ∈ S}.

• f (x)≥ a if and only if − f (x)≤−a.

• f (x) = a if and only if f (x)≤ a∧− f (x)≤−a.

Lemma

Any linear programming problem can be brought to the form

max{cT x | Ax ≤ b} or max{cT x | Ax = b,x ≥ 0}.

Proof: a) aT x ≤ β  aT x+ x′ = β,x′ ≥ 0 (slack variable)
b) x free x = x+− x−, x+,x− ≥ 0.

Practical problem solving
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1. Model building

2. Model solving

3. Model analysis

Example: Production problem

A firm produces n different goods using m different raw materials.

• bi: available amount of the i-th raw material

• ai j: number of units of the i-th material needed to produce one unit of the j-th good

• c j: revenue for one unit of the j-th good.

Decide how much of each good to produce in order to maximize the total revenue decision variables x j.

Linear programming formulation

max c1x1 + · · · + cnxn

w.r.t. a11x1 + · · · + a1nxn ≤ b1,

...
...

am1x1 + · · · + amnxn ≤ bm,

x1, . . . ,xn ≥ 0.

In matrix notation:
max{cT x | Ax ≤ b,x ≥ 0},

where A ∈ Rm×n,b ∈ Rm,c ∈ Rn,x ∈ Rn.

Geometric illustration

max x1 + x2
w.r.t. x1 + 2x2 ≤ 3

2x1 + x2 ≤ 3
x1 , x2 ≥ 0

Polyhedra

• Hyperplane H = {x ∈ Rn | aT x = β}, a ∈ Rn \{0},β ∈ R

• Closed halfspace H = {x ∈ Rn | aT x ≤ β}
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• Polyhedron P = {x ∈ Rn | Ax ≤ b},A ∈ Rm×n,b ∈ Rm

• Polytope P = {x ∈ Rn | Ax ≤ b, l ≤ x ≤ u}, l,u ∈ Rn

• Polyhedral cone P = {x ∈ Rn | Ax ≤ 0}

The feasible set
P = {x ∈ Rn | Ax ≤ b}

of a linear optimization problem is a polyhedron.

Vertices, Faces, Facets

• P ⊆ H,H ∩P 6= /0 (Supporting hyperplane)

• F = P∩H (Face)

• dim(F) = 0 (Vertex)

• dim(F) = 1 (Edge)

• dim(F) = dim(P)−1 (Facet)

• P pointed: P has at least one vertex.

Illustration

Rays and extreme rays

• r ∈ Rn is a ray of the polyhedron P
if for each x ∈ P the set {x+λr | λ ≥ 0}
is contained in P.

• A ray r of P is extreme
if there do not exist two linearly
independent rays r1,r2 of P
such that r = 1

2(r1 + r2).
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Hull operations

• x ∈ Rn is a linear combination of x1, . . . ,xk ∈ Rn if

x = λ1x1 + · · ·+λkxk, for some λ1, . . . ,λk ∈ R.

• If, in addition 
λ1, . . . ,λk ≥ 0,

λ1 + · · ·+λk = 1,
λ1, . . . ,λk ≥ 0, λ1 + · · ·+λk = 1,

 x is a


conic
affine

convex

combination.

• For S ⊆ Rn,S 6= /0, the set lin(S) (resp. cone(S),aff(S),conv(S)) of all linear (resp. conic, affine, convex)
combinations of finitely many vectors of S is called the linear (resp. conic, affine, convex) hull of S.

Outer and inner descriptions

• A subset P ⊆ Rn is a H-polytope, i.e., a bounded set of the form Outer

P = {x ∈ Rn | Ax ≤ b}, for some A ∈ Rm×n,b ∈ Rm.

if and only if it is a V -polytope, i.e., Inner

P = conv(V ), for some finite V ⊂ Rn

• A subset C ⊆ Rn is a H-cone, i.e., Outer

C = {x ∈ Rn | Ax ≤ 0}, for some A ∈ Rm×n.

if and only if it is a V -cone, i.e., Inner

C = cone(Y ), for some finite Y ⊂ Rn

Minkowski sum

• X ,Y ⊆ Rn

• X +Y = {x+ y | x ∈ X ,y ∈ Y} (Minkowski sum)

+ =

Main theorem for polyhedra

A subset P ⊆ Rn is a H-polyhedron, i.e., Outer

P = {x ∈ Rn | Ax ≤ b}, for some A ∈ Rm×n,b ∈ Rm.

if and only if it is a V -polyhedron, i.e., Inner

P = conv(V )+ cone(Y ), for some finite V,Y ⊂ Rn
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Theorem of Minkowski

• For each polyhedron P⊆Rn there exist finitely many points p1, . . . , pk in P and finitely many rays r1, . . . ,rl

of P such that
P = conv(p1, . . . , pk)+ cone(r1, . . . ,rl).

• If the polyhedron P is pointed, then p1, . . . , pk may be chosen as the uniquely determined vertices of P,
and r1, . . . ,rl as representatives of the up to scalar multiplication uniquely determined extreme rays of P.

• Special cases

– A polytope is the convex hull of its vertices.

– A pointed polyhedral cone is the conic hull of its extreme rays.

Application: Metabolic networks

� � � �
� � � �
� � � �

� � �
� � �
� � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � �
� � �
� � �

� � �
� � �
� � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � �
� � �
� � �

	 	 	
	 	 	
	 	 	


 
 


 
 


 
 


� � �
� � �
� � �

E

F

G
2 10

11

12

4

8

B D

C 6

9

A

7

1

5

3 X12

X10

X7

X1

X3

X4

"System boundary"

Irreversible reaction
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External metabolite
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Stoichiometric matrix

• Metabolites (internal) rows

• Biochemical reactions columns

kA+ lC
j−→ mE +nH
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C
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F
G
H



. . . −k . . .
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S =



1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 −1 0 0 0 0 0 0 0
0 1 0 −1 0 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 −1 0 −1 0
0 0 0 0 0 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 1 −1 0 0


.

Flux cone

• Flux balance: Sv = 0

• Irreversibiliy of some reactions: vi ≥ 0, i ∈ Irr.

• Steady-state flux cone
C = {v ∈ Rn | Sv = 0,vi ≥ 0, for i ∈ Irr}

• Metabolic network analysis find p1, . . . , pk ∈C with C = cone{p1, . . . , pk}.

Simplex Algorithm: Geometric view

Linear optimization problem
max{cT x | Ax ≤ b,x ∈ Rn} (LP)

Simplex-Algorithm (Dantzig 1947)

1. Find a vertex of P.

2. Proceed from vertex to vertex along edges of P such that the objective function z = cT x increases.

3. Either a vertex will be reached that is optimal, or an edge will be chosen which goes off to infinity and
along which z is unbounded.

Basic solutions

• Ax ≤ b, A ∈ Rm×n,rank(A) = n.

• M = {1, . . . ,m} row indices, N = {1, . . . ,n} column indices

• For I ⊆ M,J ⊆ N let AIJ denote the submatrix of A defined by the rows in I and the columns in J.

• I ⊆ M, |I|= n is called a basis of A iff AI∗ = AIN is non-singular.

• In this case, A−1
I∗ bI , where bI is the subvector of b defined by the indices in I, is called a basic solution.

• If x = A−1
I∗ bI satisfies Ax ≤ b, then x called a basic feasible solution and I is called a feasible basis.
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Algebraic characterization of vertices

Theorem

Given the non-empty polyhedron P = {x ∈ Rn | Ax ≤ b}, where rank(A) = n, a vector v ∈ Rn is a vertex of P if
and only if it is a basic feasible solution of Ax ≤ b, for some basis I of A.

For any c ∈ Rn, either the maximum value of z = cT x for x ∈ P is attained at a vertex of P or z is unbounded on
P.

Corollary

P has at least one and at most finitely many vertices.

Remark

In general, a vertex may be defined by several bases.

Simplex Algorithm: Algebraic version

• Suppose rank(A) = n (otherwise apply Gaussian elimination).

• Suppose I is a feasible basis with corresponding vertex v = A−1
I∗ bI .

• Compute uT def= cT A−1
I∗ (vector of n components indexed by I).

• If u ≥ 0, then v is an optimal solution, because for each feasible solution x

cT x = uT AI∗x ≤ uT bI = uT AI∗v = cT v.

• If u 6≥ 0, choose i ∈ I such that ui < 0 and define the direction d def= −A−1
I∗ ei, where ei is the i-th unit basis

vector in RI .

• Next increase the objective function value by going from v in direction d, while maintaining feasibility.

Simplex Algorithm: Algebraic version (2)

1. If Ad 6≤ 0, the largest λ ≥ 0 for which v+λd is still feasible is

λ
∗ = min{bl −Al∗v

Al∗d
| l ∈ {1, . . . ,m},Al∗d > 0}. (PIV)

Let this minimum be attained at index k. Then k 6∈ I because AI∗d =−ei ≤ 0.

Define I′ = (I \{i})∪{k}, which corresponds to the vertex v+λ∗d.

Replace I by I′ and repeat the iteration.

2. If Ad ≤ 0, then v+λd is feasible, for all λ ≥ 0. Moreover,

cT d =−cT A−1
I∗ ei =−uT ei =−ui > 0.

Thus the objective function can be increased along d to infinity and the problem is unbounded.

Termination and complexity

• The method terminates if the indices i and k are chosen in the right way (such choices are called pivoting
rules).
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• Following the rule of Bland, one can choose the smallest i such that ui < 0 and the smallest k attaining
the minimum in (PIV).

• For most known pivoting rules, sequences of examples have been constructed such that the number of
iterations is exponential in m+n (e.g. Klee-Minty cubes).

• Although no pivoting rule is known to yield a polynomial time algorithm, the Simplex method turns out to
work very well in practice.

Simplex : Phase I

• In order to find an initial feasible basis, consider the auxiliary linear program

max{y | Ax−by ≤ 0, −y ≤ 0, y ≤ 1}, (Aux)

where y is a new variable.

• Given an arbitrary basis K of A, obtain a feasible basis I for (Aux) by choosing I = K ∪{m + 1}. The
corresponding basic feasible solution is 0.

• Apply the Simplex method to (Aux). If the optimum value is 0, then (LP) is infeasible. Otherwise, the
optimum value has to be 1.

• If I′ is the final feasible basis of (Aux), then K′ = I′ \ {m + 2} can be used as an initial feasible basis for
(LP).

Duality

• Primal problem: zP = max{cTx | Ax ≤ b, x ∈ Rn} (P)

• Dual problem: wD = min{bT u | AT u = c, u ≥ 0} (D)

General form
(P) (D)

min cT x max uT b
w.r.t. Ai∗x ≥ bi, i ∈ M1 w.r.t ui ≥ 0, i ∈ M1

Ai∗x ≤ bi, i ∈ M2 ui ≤ 0, i ∈ M2

Ai∗x = bi, i ∈ M3 ui free, i ∈ M3

x j ≥ 0, j ∈ N1 (A∗ j)T u ≤ c j, j ∈ N1

x j ≤ 0, j ∈ N2 (A∗ j)T u ≥ c j, j ∈ N2

x j free, j ∈ N3 (A∗ j)T u = c j, j ∈ N3

Duality theorems

Theorem

• If x∗ is primal feasible and u∗ is dual feasible, then

cT x∗ ≤ zP ≤ wD ≤ bT u∗.

• Only four possibilities:

1. zP and wD are both finite and equal.

2. zP = +∞ and (D) is infeasible.
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3. wD =−∞ and (P) is infeasible.

4. (P) and (D) are both infeasible.

Complexity of linear programming

Theorem (Khachyian 79)
The following problems are solvable in polynomial time:

• Given a matrix A ∈ Qm×n and a vector b ∈ Qm, decide whether Ax ≤ b has a solution x ∈ Qn, and if so,
find one.

• (Linear programming problem) Given a matrix A ∈ Qm×n and vectors b ∈ Qm,c ∈ Qn, decide whether
max{cT x | Ax ≤ b,x ∈ Qn} is infeasible, finite, or unbounded. If it is finite, find an optimal solution. If it is
unbounded, find a feasible solution x0, and find a vector d ∈Qn with Ad ≤ 0 and cT d > 0.

Complexity of integer linear programming

Satisfiability over Q over Z over N
Linear equations polynomial polynomial NP-complete

Linear inequalities polynomial NP-complete NP-complete


